Preferred Language
Articles
/
jih-1834
An Improvement of MRI Brain Images Classification Using Dragonfly Algorithm as Trainer of Artificial Neural Network
...Show More Authors

  Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead of backpropagation as training algorithm for artificial neural network (ANN). Some other recent training-based Neural Networks, SVM, and KNN classifiers are used for comparison with the proposed classifier. The classifiers are utilized to classify image as normal or abnormal MRI human brain image. The results show that the proposed classifier is outperformed the other competing classifiers.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Advances In Computational Intelligence And Robotics
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images
...Show More Authors

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff

... Show More
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
An analytical study of the spread patterns of the informal settlements in Baghdad and sustainable urban improvement approaches
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Apr 01 2018
Journal Name
2018 9th International Conference On Information And Communication Systems (icics)
An intersection-based segment aware algorithm for geographic routing in VANETs
...Show More Authors

In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
البحوث التربوية والنفسية
The effectiveness of an educational design based on Herman’s total brain theory on the achievement of chemistry among fifth-grade female students
...Show More Authors

Preview PDF
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Capacitated Vehicle Routing Problem (CVRP) Using Tabu Search Algorithm (TSA)
...Show More Authors

This paper investigates the capacitated vehicle routing problem (CVRP) as it is one of the numerous issues that have no impeccable solutions yet. Numerous scientists in the recent couple of decades have set up various explores and utilized numerous strategies with various methods to deal with it. However, for all researches, finding the least cost is exceptionally complicated. In any case, they have figured out how to think of rough solutions that vary in efficiencies relying upon the search space. Furthermore, tabu search (TS) is utilized to resolve this issue as it is fit for solving numerous complicated issues. The algorithm has been adjusted to resolve the exploration issue, where its methodology is not quite the same as the normal a

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
2016 6th International Conference On Information Communication And Management (icicm)
Enhancing case-based reasoning retrieval using classification based on associations
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Effects of ethanol on the hippocampus of rat Brain
...Show More Authors

ten albino male rates were orally treated daily 20% and 30% ethanol for 30 days treatment with 30%ethanol caused of hippocampuse of darckness google hospital patients

View Publication Preview PDF
Publication Date
Wed Apr 01 2020
Journal Name
Plant Archives
Land cover change detection using satellite images based on modified spectral angle mapper method
...Show More Authors

This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio

... Show More
Scopus (2)
Scopus
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya Algorithm
...Show More Authors

Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing appli

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref