In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.
The dangers of (Israel's) integration with Arab countries in the middle east region will threaten the Arab security structure dimension, which the latter makes the Arab regional system vulnerable for distortion due to its nominal and symbolic value which is far from the Arab self and questioning with its effectiveness in comparing with the real capabilities to Arab countries in achieving the common targets. So, how to assess the different problems that began to hit the structure of the Arab regional system? and how to pledge an allegiance after putting forward what is known as the American Deal of the Century for the administration of former US President Donald Trump for making another step toward normalization with (Israel)?. The reveal
... Show MoreThe aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
The paper aims is to solve the problem of choosing the appropriate project from several service projects for the Iraqi Martyrs Foundation or arrange them according to the preference within the targeted criteria. this is done by using Multi-Criteria Decision Method (MCDM), which is the method of Multi-Objective Optimization by Ratios Analysis (MOORA) to measure the composite score of performance that each alternative gets and the maximum benefit accruing to the beneficiary and according to the criteria and weights that are calculated by the Analytic Hierarchy Process (AHP). The most important findings of the research and relying on expert opinion are to choose the second project as the best alternative and make an arrangement acco
... Show MoreIraq has suffered since 1991 from international sanctions imposed on it by the dictatorial regime that existed at the time, invading Kuwait, which led to the decline of the status of Iraq and the isolation of international and regional (Arab) and clear Iraq as a strange entity living within its regional environment, after April 2003 did not change much In fact, there were no signs of détente before the Arab League summit in Baghdad in 2011, and the signs of a break in the stalemate in inter-relations over the past years have become evident. Disruption and refraction was not high (Islamic Republic of Iran, Turkey, Syrian Arab Republic, Hashemite Kingdom of Jordan, Saudi Arabia, Kuwait). Each side is governed by perceptions about Iraq, es
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreIn this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة
... Show More