Preferred Language
Articles
/
jih-1817
Local Search Algorithms for Multi-criteria Single Machine Scheduling Problem
...Show More Authors

   Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.

We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑) problem (SP) to find near optimal solutions. The local search methods are used to speed up the process of finding a good enough solution, where an exhaustive search is impractical for the exact solution. The two heuristic (DM and SM) were compared with the branch and bound (BAB) algorithm in order to evaluate effectiveness of the solution methods.

            Some experimental results are presented to show the applicability of the (BAB) algorithm and (LSAs). With a reasonable time, (LSAs) may solve the problem (SP) up to 5000 jobs.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 23 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Heuristic and Meta-Heuristic Optimization Models for Task Scheduling in Cloud-Fog Systems: A Review
...Show More Authors

Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
A secure Search over Distributed Data
...Show More Authors

In recent years, due to the economic benefits and technical advances of cloud
computing, huge amounts of data have been outsourced in the cloud. To protect the
privacy of their sensitive data, data owners have to encrypt their data prior
outsourcing it to the untrusted cloud servers. To facilitate searching over encrypted
data, several approaches have been provided. However, the majority of these
approaches handle Boolean search but not ranked search; a widely accepted
technique in the current information retrieval (IR) systems to retrieve only the top–k
relevant files. In this paper, propose a distributed secure ranked search scheme over
the encrypted cloud servers. Such scheme allows for the authorized user to

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Thermal Simulation for Unconditioned Single Zone with Modified Roof
...Show More Authors

Roof in the Iraqi houses normally flattening by a concrete panel. This concrete panel has poor thermal properties. The usage of materials with low thermal conductivity and high specific heat gives a good improvements to the thermal properties of the concrete panel, thus, the indoor room temperature improves. A Mathcad program based on a mathematical model employing complex Fourier series built for a single room building. The model input data are the ambient temperature, solar radiation, and sol-air temperature, which have been treated as a periodic function of time. While, the room construction is constant due to their materials made of it, except the roof properties are taken as a variable generated practically from the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Error Analysis in Numerical Algorithms
...Show More Authors

   In this paper, we applied the concept of the error analysis using the linearization method and new condition numbers constituting optimal bounds in appraisals of the possible errors. Evaluations of finite continued fractions, computations of determinates of tridiagonal systems, of determinates of second order and a "fast" complex multiplication. As in Horner's scheme, present rounding error analysis of product and summation algorithms. The error estimates are tested by numerical examples. The executed program for calculation is "MATLAB 7" from the website "Mathworks.com

View Publication Preview PDF
Publication Date
Sun Mar 06 2022
Journal Name
Al–bahith Al–a'alami
Semiotic criteria for analyzing religious symbols in press reports Qantara news site as a model
...Show More Authors

The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the problem of the semiotic employment of religious symbols in press reports published in the electronic press across two levels: Reading to perceive the visual message in its abstract form, and the second for re-understanding and interpretation, as this level gives semantics to reveal the implicit level of media messages through a set of semiotic criteria on which it was based to cut texts to reach the process of understanding and interpretation.

The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the p

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Statistics And Its Interface
Search for risk haplotype segments with GWAS data by use of finite mixture models
...Show More Authors

The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled

... Show More
View Publication
Scopus Clarivate Crossref