In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.
In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o
Multilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m
... Show MoreEach phenomenon contains several variables. Studying these variables, we find mathematical formula to get the joint distribution and the copula that are a useful and good tool to find the amount of correlation, where the survival function was used to measure the relationship of age with the level of cretonne in the remaining blood of the person. The Spss program was also used to extract the influencing variables from a group of variables using factor analysis and then using the Clayton copula function that is used to find the shared binary distributions using multivariate distributions, where the bivariate distribution was calculated, and then the survival function value was calculated for a sample size (50) drawn from Yarmouk Ho
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreIn this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function,
... Show MoreIn this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
This paper deals with constructing mixed probability distribution from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are ( .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β) are estimated by three different methods, which are maximum likelihood, and Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.