Preferred Language
Articles
/
jih-1815
The Comparison Between the Bayes Estimator and the Maximum Likelihood Estimator of the Reliability Function for Negative Exponential Distribution
...Show More Authors

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 12 2022
Journal Name
Journal Of Economics And Administrative Sciences
Nonparametric Estimator (Histogram) For Estimating Probability Density Function: Nonparametric Estimator (Histogram) For Estimating Probability Density Function
...Show More Authors

 In this paper we introduce several estimators for Binwidth of histogram estimators' .We use simulation technique to compare these estimators .In most cases, the results proved that the rule of thumb estimator is better than other estimators.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 30 2012
Journal Name
Journal Of Kufa For Mathematics And Computer
On Jeffery Prior Distribution in Modified Double Stage Shrinkage-Bayesian Estimator for Exponential Mean
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Estimators for the Parameter of the Inverted Exponential Distribution Under different Double informative priors
...Show More Authors

In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.

Additionally Maximum likelihood estimation method

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayes Estimators With others , for scale parameter and Reliability function of two parameters Frechet distribution
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient Single Stage Shrinkage Estimator for the Scale parameter of Inverted Gamma Distribution
...Show More Authors

 The present  paper agrees  with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using  suitable  shrinkage weight factor and region.  The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator  are performed .The results are presented in attached tables.

View Publication Preview PDF
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Inference for the Parameter and Reliability Function of Basic Gompertz Distribution under Precautionary loss Function
...Show More Authors

     In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Estimator for the Scale Parameter of the Normal Distribution Under Different Prior Distributions
...Show More Authors

In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation
...Show More Authors

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

View Publication Preview PDF
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage Estimator For the Variance of Normal Distribution With Unknown Mean
...Show More Authors

     This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate  of the actual value (s2) is a available when the mean is unknown  , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).

      Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the me

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 04 2012
Journal Name
Journal Of The College Of Basic Education
Double Stage Shrinkage Estimator in Pareto Distribution
...Show More Authors

View Publication Preview PDF