Preferred Language
Articles
/
jih-1423
Brain Tumor Detection Method Using Unsupervised Classification Technique
...Show More Authors

Magnetic  Resonance  Imaging  (MRI)  is  one  of  the  most important diagnostic tool. There are many methods to segment the

tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment   the   brain   with   high   precision.   In   this   project,   the unsupervised  classification methods have been used in order to detect the tumor  disease from MRI images.    These methods involved K­ mean or Isodat, which were based on the digital value distribution. The results show the classification process was a powerful tool to identify the Tumor disease from MRI images.   All results were evaluated  by  using the ENVI Version 3.2 facility.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 03 2020
Journal Name
Rawal Medical Journal
Functional outcomes of sandwich reconstruction technique for giant cell tumor around the knee joint
...Show More Authors

Objective: To evaluate the functional outcomes after extended curettage and reconstruction using a combination of bone graft and bone cement (sandwich). Methodology: In this prospective case series 16 skeletally mature patients with primary giant cell tumor around the knee were included. Patients with previous surgically treated, malignant transformation, degenerative knee changes and those presenting with pathological fracture were excluded. The tumor was excised with bone graft filling space beneath the articular cartilage and a block of gel foam was placed over the cortical surface of picked bone graft. Remaining cavity was filled with polymethylmethacrylate cement (sandwich) with or without internal fixation. The func tional evaluation

... Show More
Preview PDF
Scopus
Publication Date
Fri Sep 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
. Medical Image Compression using Hybrid Technique of Wavelet Transformation and Seed Selective Predictive Method
...Show More Authors

Publication Date
Fri Sep 01 2023
Journal Name
Iraqi Journal Of Physics
Photometry Technique to Map Elements’ Distribution on Comets’ Nuclei Surfaces Using a New Method
...Show More Authors

This study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2016
Journal Name
2016 Al-sadeq International Conference On Multidisciplinary In It And Communication Science And Applications (aic-mitcsa)
Landsat-8 (OLI) classification method based on tasseled cap transformation features
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Ieee Photonics Journal
Di-Iron Trioxide Hydrate-Multi-Walled Carbon Nanotube Nanocomposite for Arsenite Detection Using Surface Plasmon Resonance Technique
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Rawaa Emad Jaloud And Fadia Falahfadia Falah
Isolation and Identification of Fungal Propagation in Iraqi Meat and Detection of Aflatoxin B1 Using ELISA Technique
...Show More Authors

Scopus (5)
Scopus
Publication Date
Tue Apr 02 2024
Journal Name
Advances In Systems Science And Applications
A New Face Swap Detection Technique for Digital Images
...Show More Authors

View Publication
Scopus
Publication Date
Tue Dec 03 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
New adaptive satellite image classification technique for al Habbinya region west of Iraq
...Show More Authors

Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
New Adaptive Satellite Image Classification Technique for Al habbinya Region West of Iraq
...Show More Authors

   Developing a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features.      The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized

... Show More
View Publication Preview PDF