Preferred Language
Articles
/
jih-1296
Study on the Physiological Function of a - Tocopherol, Vitamin (E) on Lipoproteins Levels in Serum of Apparantly Healthy Individuals
...Show More Authors

The  role  of  free  radicals  generation  and  Lipid  Peroxidation

during the course of ischemic heart disease is well establshed as a basic for Pthogenesis and subsequent tissue damage consequenes . In an attempt to shed a light on the possible relationship between lipid peroxidation and some antioxidant.

The effect of vitamine E  (as a potent antioxidant free radical scavenger) . On the serum levels of the Lipoproteins, (HDLc) High Density Lipoprotein , (LDLc) Low Density Lipoprotein and (VLDLc) very Low Density Lipoprotein in healthy donors.

The  study  includes  (50) healthy  donors  from  males  and  females  ,

who  had  given Vitamin  E    (400 Ul) daily  for one month  and were divided into two groups.

  1. Group (A): includes (25) males donors (20-40) years old, befor

and after giving Vitamin E.

  1. Group (B): includes (25) females donors (20-40)  years , befor

and after giving Vitamin E.

The  Level  of  Lipoproteins  (HDLc),  (LDLc),  (VLDLc)  and (LDLc)/ (HDLc)was determ ed in sera of healthy donors.

The results of study indicated and confirmed  the role of Vitamin

(E) in reducing of (LDLc) Level, while an increase in (HDLc) level after Vitarnine (E) ingestion for the healthy donors .

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Applied System Innovation
Earthquake Hazard Mitigation for Uncertain Building Systems Based on Adaptive Synergetic Control
...Show More Authors

This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 11 2018
Journal Name
Baghdad Science Journal
Water flow velocity and oxide film formation effect on copper pipe corrosion
...Show More Authors

An overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Encryption Algorithm Based on Chaotic Neural Network and Random Key Generator
...Show More Authors

This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Sentiment Analysis on Roman Urdu Students’ Feedback Using Enhanced Word Embedding Technique
...Show More Authors

 

Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 16 2018
Journal Name
British Journal Of Educational Technology
Group tagging: Using video tagging to facilitate reflection on small group activities
...Show More Authors

Collaborative learning in class‐based teaching presents a challenge for a tutor to ensure every group and individual student has the best learning experience. We present Group Tagging, a web application that supports reflection on collaborative, group‐based classroom activities. Group Tagging provides students with an opportunity to record important moments within the class‐based group work and enables reflection on and promotion of professional skills such as communication, collaboration and critical thinking. After class, students use the tagged clips to create short videos showcasing their group work activities, which can later be reviewed by the teacher. We report on a deployment of Group Tagging in an undergraduate Computing Scie

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Fuzzy Convergence Sequence and Fuzzy Compact Operators on Standard Fuzzy Normed Spaces
...Show More Authors

The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators  are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit  where linear operator from complete standard fuzzy normed space  into a standard fuzzy normed space  then  belongs to the set of all fuzzy bounded linear operators

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Apr 15 2024
Journal Name
Journal Of Engineering Science And Technology
Text Steganography Based on Arabic Characters Linguistic Features and Word Shifting Method
...Show More Authors

In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn

... Show More
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (2)
Crossref