Preferred Language
Articles
/
jih-1295
Thermoelectric Power of Amorphous InAs Thin Films
...Show More Authors

The thermoelectric power (S) of thermal evaporated a-InAs films

were measured in the temperature rang (303-408) K.

These films were prepared at different thickness (250,350,450) nm and treated at different annealing temperatures (303,373,423,473,523) K.

The behaviour  of the thermoelectric power  studies of these films

as  a  function  of  thickness  and  annealing  temperature  showed  the thermoelectric  power an increasing trend with annealing temperature

,whereas it decreases as the film thickness increases.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 12 2010
Journal Name
Baghdad Science Journal
Structural characterization of gamma irradiated ZnS thin films
...Show More Authors

The effects of gamma irradiation on the structure of ZnS films , which preparing by flash evaporation method, are studied using XRD. Two peaks of (111), (220) orientations are appeared in X ray chart indicating the cubic phase of the films .The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of preferred orientation in the film are calculated and correlated with gamma irradiation.

Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Optical Investigations of CdSe1-x Tex Thin Films
...Show More Authors

The alloys of CdSe1-xTex compound have been prepared from their elements successfully with high purity (99.9999%) which mixed stoichiometry ratio (x=0.0, 0.25, 0.5, 0.75 and 1.0) of (Cd, Se and Te) elements. Films of CdSe1-xTex alloys for different values of composition with thickness(0.5?m) have been prepared by thermal evaporation method at cleaned glass substrates which heated at (473K) under very low pressure (4×10-5mbar) at rate of deposition (3A?/s), after that thin films have been heat treated under low pressure (10-2mbar) at (523K) for two hours. The optical studies revealed that the absorption coefficient (?) is fairly high. It is found that the electronic transitions in the fundamental absorption edge tend to be allowed direct tr

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Optical properties of ZnS and PEDOT thin films
...Show More Authors

Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th

... Show More
Scopus (2)
Scopus
Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
Some gas sensing properties of PbS thin films
...Show More Authors

In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.

View Publication Preview PDF
Publication Date
Thu Nov 01 2001
Journal Name
Renewable Energy
Optoelectronic properties of a-Si1−xGex:H thin films
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
optical proprties of poly crystaline CdS thin films
...Show More Authors

Studied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated

View Publication Preview PDF
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Optical properties of Ternary Se80-xTe20Gex Thin Films
...Show More Authors

The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures

View Publication Preview PDF
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
ZnO Characterization of ZnO/GaAs heterojunction: ZnO thin films
...Show More Authors

ZnO thin films have been prepared by pulse laser deposition technique at room temperatures (RT). These films were deposited on GaAs substrate to form the ZnO/GaAs heterojunction solar cell. The effect of annealing temperatures at ( RT,100, 200)K on structural and optical properties of ZnO thin films has been investigated. The X-ray diffraction analysis indicated that all films have hexagonal polycrystalline structure. AFM shows that the grains uniformly distributed with homogeneous structure. The optical absorption spectra showed that all films have direct energy gap. The band gap energy of these films decreased with increasing annealing temperatures.  From the electrical properties, the carriers have n-type conductivity.  From

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Characterization of CuO thin films for gas sensing applications
...Show More Authors

Nanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Preparation and properties of Nanostructure Zinc Oxide Thin Films
...Show More Authors

Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using

... Show More
View Publication Preview PDF