The dielectric properties of polyvinyl chloride (PVC)-MnCl2 composite were studied by using the impedance technique. The measurements were carried out as a function of frequency in the range from 10 Hz to 13 MHz and temperature range from 27oC to 55oC. Using a composite of 20 wt. % MnCl2 by weight, it was found that the dielectric constants and the dielectric loss of the prepared films increase with the increasing temperature at law frequency and the enhancement of the ionic conduction which is confirmed by the increase the of AC. conductivity and the decrease of the activation energy of the conduction mechanism at high applied frequency. The observed relaxation and polarization effects of composite are mainly attributed to the dielectric behavior of the MnCl2 filler and polarity of the polymer PVC. However, the results were explained on the basis of the interfacial (space charge) polarization dipolar polarization and the decrease of the hindrance of the polymer matrix with the ionic mobility and impurities in the composite.
This research aims to investigate the thermal performance of different thermal composite insulators, wrapped around a closed-loop copper pipe (CLP). To achieve this aim a system was designed and manufactured. It is consisted of closed water tank insulated by Rock Wool, and supplied with two electric heaters, two thermostat, a flow meter, a water pump, digital temperature scales, and four series of (CLP).
Six insulators were prepared namely; composites of Impregnated Fiberglass with Elastoclad and foaming Rubber (FER), Impregnated Fiberglass with Elastoclad resin and Polymeric Membrane (FEM), Impregnated Fiberglass with Polyurethane thermoset resin and Foaming Rubber (FUR), Impregnated Fiberglass with Polyurethane thermoset resin and P
Copper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreThe effects of temperature on an exotic aquatic snail Pomacea canaliculata (Lamarck, 1819) collected from the Shatt Al-Arab intertidal zone were investigated. A series of laboratory experiments were conducted during the summer period of 2017. Individuals of new born snails hatched in the laboratory from adult snails were collected from Shatt Al-Arab intertidal zone, and subjected to five fixed temperatures: 15, 25, 35, 40 and 45 Cº, after short term thermal acclimation. The heartbeats (HB) were counted at each temperature level. The results showed significant direct increase of HB from 15 Cº (19.8 HB/min) up to 25 Cº (76 HB/min) (P<0.05) as well as from 25 Cº to 35 Cº (93 HB/min). At 40 Cº the snail HB
... Show Moresix specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
Nanocrystalline TiO 2 and CuO doped TiO 2 thin films were successfully deposited on suitably cleaned glass substrate at constant room temperature and different concentrations of CuO (0.05,0.1,0.15,0.2) wt% using pulse laser deposition(PLD) technique at a constant deposition parameter such as : (pulse Nd:YAG laser with λ=1064 nm, constant energy 800 mJ, with repetition rate 6 Hz and No. of pulse (500). The films were annealed at different annealing temperatures 423K and 523 K. The effect of annealing on the morphological and electrical properties was studied. Surface morphology of the thin films has been studied by using atomic force microscopes which showed that the films have good crystalline and homogeneous surface. The Root M
... Show MoreThis study “discusses the benefit of “addition waste paper as a “new cellulose material “in mortar mixes. A partial addition of waste paper by cement weight was achieved to produce cement composite mortar. Pulp and paper is the third major industrial dumper of air, soil and water. In recent year, paper and paperboard constitute a greater portion of many countries’ urban solid discarded generation. Beside, it increases characteristic “strength due to existence “of hydrogen links “in the microstructure of “paper. Furthermore, it consume “better thermal protection. The addition percentages “of waste paper used “in this work were (5%, 10%, 15% and 20%) by “mass of cement to measure and evaluat
... Show MoreBackground: Appreciation of the crucial role of risk factors in the development of coronary artery disease (CAD) is one of the most significant advances in the understanding of this important disease. Extensive epidemiological research has established cigarette smoking, diabetes, hyperlipidemia, and hypertension as independent risk factors for CADObjective: To determine the prevalence of the 4 conventional risk factors(cigarette smoking, diabetes, hyperlipidemia, and hypertension) among patients with CAD and to determine the correlation of Thrombolysis in Myocardial Infarction (TIMI) risk score with the extent of coronary artery disease (CAD) in patients with unstable angina /non ST elevation myocardial infarction (UA/NSTEMI).Methods: We
... Show More