Indium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreThe effect of annealing temperature (Ta) on the electrical properties like ,D.C electrical conductivity (σ DC), activation energy (Ea),A.C conductivity σa.c ,real and imaginary (ε1,ε2) of dielectric constants ,relaxation time (τ) has been measured of ZnS thin films (350 nm) in thickness which were prepared at room temperature (R.T) using thermal evaporation under vacuum . The results showed that σD.C increases while the activation energy values(Ea) decreases with increasing of annealing temperature.(Ta) from 303- 423 K .
The density of charge carriers (nH) and Hall mobility (μH) increases also with increasing of annealing temperature Hall effect measurements showed that ZnS films were n-type converted to p-type at high annealin
Nano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do
In this research we prepared CdS thin films by Spray pyrolysis method on a glass substrates and we study its structural , optical , electrical properties .The result of (X-Ray ) diffraction showed that all thin films have a polycrystalline structure , The relation of the transmission as a function of wavelength for the CdS films had been studied , The investigated of direct energy gap of the CdS its value is (2.83 eV). In Hall effect measurement of the CdS we find the charge carriers is p – type and Hall coefficient 1157.33(cm3/c) ,Hall mobility 6.77(cm2/v.s)
The structural properties of ternary chalcopyrite AgAlSe2 compound alloys and thin films that prepared by the thermal evaporation method at room temperature on glass substrate with a deposition rate (5±0.1) nm s-1 for different values of thickness (250,500 and 750±20) nm, have been studied, using X-ray diffraction technology. As well as, the optical properties of the prepared films have been investigated. The structural investigated shows that the alloy has polycrystalline structure of tetragonal type with preferential orientation (112), while the films have amorphous structure. Optical measurement shows that AgAlSe2 films have high absorption in the range of wavelength (350-700 nm). The optical energy gap for allowed direct transition we
... Show MoreThe structural properties of ternary chalcopyrite AgAlSe2 compound alloys and thin films that prepared by the thermal evaporation method at room temperature on glass substrate with a deposition rate (5±0.1) nm s-1 for different values of thickness (250,500 and 750±20) nm, have been studied, using X-ray diffraction technology. As well as, the optical properties of the prepared films have been investigated. The structural investigated shows that the alloy has polycrystalline structure of tetragonal type with preferential orientation (112), while the films have amorphous structure. Optical measurement shows that AgAlSe2 films have high absorption in the range of wavelength (350-700 nm). The optical energy gap for allowed direct
... Show MoreThe electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.
Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreThe paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.