Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e 0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR R and Re R .
(ii) xR 0 implies x 0 .
(iii ) eRx 0 implies x 0( and hence Rx 0 implies x 0) .
(iv) exeR(1 e) 0 implies exe 0 .
If D is a derivable map of R satisfying D(R ) R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.
Throughout this paper S will be denote a monoids with zero. In this paper, we introduce the concept of En- prime subact, where a proper subact B of a right S- act As is called En- prime subact if for any endomorphism f of As and a As with f(a)S⊆ Bimplies that either a B or f(As) ⊆ B. The right S-act As is called En-prime if the zero subact of As is En-prime subact. Some various properties of En-prime subact are considered, and also we study some relationships between En-prime subact and some other concepts such as prime subact and maximal subact.
Let R be a Γ-ring and G be an RΓ-module. A proper RΓ-submodule S of G is said to be semiprime RΓ-submodule if for any ideal I of a Γ-ring R and for any RΓ-submodule A of G such that or which implies that . The purpose of this paper is to introduce interesting results of semiprime RΓ-submodule of RΓ-module which represents a generalization of semiprime submodules.
In this paper, we study the class of prime semimodules and the related concepts, such as the class of semimodules, the class of Dedekind semidomains, the class of prime semimodules which is invariant subsemimodules of its injective hull, and the compressible semimodules. In order to make the work as complete as possible, we stated, and sometimes proved, some known results related to the above concepts.
Let ℛ be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.
In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.
Let R be a commutative ring with identity and let Mbe a unitary R-module. We shall say that a proper submodule N of M is nearly S-primary (for short NS-primary), if whenever , , with implies that either or there exists a positive integer n, such that , where is the Jacobson radical of M. In this paper we give some new results of NS-primary submodule. Moreover some characterizations of these classes of submodules are obtained.
Let R be an associative ring with identity and let M be a unitary left R–module. As a generalization of small submodule , we introduce Jacobson–small submodule (briefly J–small submodule ) . We state the main properties of J–small submodules and supplying examples and remarks for this concept . Several properties of these submodules are given . Also we introduce Jacobson–hollow modules ( briefly J–hollow ) . We give a characterization of J–hollow modules and gives conditions under which the direct sum of J–hollow modules is J–hollow . We define J–supplemented modules and some types of modules that are related to J–supplemented modules and int
... Show MoreLet be a commutative ring with unity and let be a submodule of anon zero left R-module , is called semiprime if whenever , implies . In this paper we say that is nearly semiprime, if whenever , implies ( ),(in short ),where ( )is the Jacobson radical of . We give many results of this type of submodules.