Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.
In this paper, we prove some coincidence and common fixed point theorems for a pair of discontinuous weakly compatible self mappings satisfying generalized contractive condition in the setting of Cone-b- metric space under assumption that the Cone which is used is nonnormal. Our results are generalizations of some recent results.
The aim of this paper is to introduce and study the concept of SN-spaces via the notation of simply-open sets as well as to investigate their relationship to other topological spaces and give some of its properties.
In this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
The aims of this thesis are to study the topological space; we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore, we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied. On the other hand, we studied weakly/ strongly forms of ω-perfect mappings, namely -ω-perfect mappings, weakly -ω-perfect mappings and strongly-ω-perfect mappings; also, we investigate their fundamental properties. We devoted to study the relationship between weakly -ω-perfect mappings and strongly -ω-perfect mappings. As well as, some new generalizations of some definitions wh
... Show More