Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero ideal I of R is called semiessential if I  P  (0) for all non zero prime ideals of R, [4]. A ring R is called uniform if every ideal of R is essential. Nada in [6] introduced and studied the notion semiuniform ring where a ring R is called semiuniform ring if every ideal of R is semiessential ideal. In this paper we fuzzify the concepts semiessential ideal of a ring, uniform ring and semiuniform ring into semiessential fuzzy ideal of fuzzy ring, uniform fuzzy ring and semiuniform fuzzy ring. Where a fuzzy ideal A of a fuzzy ring X is semiessential if I  P  (0) for any prime fuzzy ideal P of X. A fuzzy ring X is called uniform (semiuniform) if every fuzzy ideal of X is essential (semiessential) respectively. In S.1, some basic definitions and results are collected. In S.2, we study semiesential fuzzy ideals of fuzzy ring, we give some basic properties about this concept. In S.3, we study the notion of uniform fuzzy rings and semiuniform fuzzy rings. Several properties about them are given. Throughout this paper, R is commutative ring with unity, and X(0) = 1, for any fuzzy ring.
The production companies in the Iraqi industry environment facing many of the problems related to the management of inventory and control In particular in determining the quantities inventory that should be hold it. Because these companies adoption on personal experience and some simple mathematical methods which lead to the identification of inappropriate quantities of inventory.
This research aims to identify the economic quantity of production and purchase for the Pepsi can 330ml and essential components in Baghdad soft drinks Company in an environment dominated by cases of non ensure and High fluctuating as a result of fluctuating demand volumes and costs ass
... Show MoreIn the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particl
... Show MoreThe Planning and Resource Development Department of the Iraqi Ministry of Health is very interested in improving medical care, health education, and village training programs. Accordingly, and through the available capabilities of the ministry, itdesires to allocate seven health centers to four villages in Baghdad, Iraq therefore the ministry needs to determine the number of health centers allocated to each of these villages which achieves the greatest degree of the overall effectiveness of the seven health centers in a fuzzy environment. The objective of this study is to use a fuzzy dynamic programming(DP) method to determine the optimal allocation of these centers, which allows the greatest overall effectiveness of these health centers
... Show MoreEvaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed
... Show MoreABSTRUCT
This research aims at examining the expected gap between the fact of planning and controlling process of production at the State Company for Electric Industries and implementation of material requirements planning system in fuzzy environment. Developing solutions to bridge the gap is required to provide specific mechanisms subject to the logic of fuzzy rules that will keep pace with demand for increased accuracy and reduced waiting times depending on demand forecast, investment in inventory to reduce costs to a minimum.
The proposed solutions for overcoming the research problem has required some questions reflecting the problem with its multiple dimensions, which ar
... Show MoreFor the generality of fuzzy ideals in TM-algebra, a cubic ideal in this algebra has been studied, such as cubic ideals and cubic T-ideals. Some properties of these ideals are investigated. Also, we show that the cubic T-ideal is a cubic ideal, but the converse is not generally valid. In addition, a cubic sub-algebra is defined, and new relations between the level subset and a cubic sub-algebra are discussed. After that, cubic ideals and cubic T-ideals under homomorphism are studied, and the image (pre-image) of cubic T-ideals is discussed. Finally, the Cartesian product of cubic ideals in Cartesian product TM-algebras is given. We proved that the product of two cubic ideals of the Cartesian product of two TM-algebras is also a cubic idea
... Show MoreFor the generality of fuzzy ideals in TM-algebra, a cubic ideal in this algebra has been studied, such as cubic ideals and cubic T-ideals. Some properties of these ideals are investigated. Also, we show that the cubic T-ideal is a cubic ideal, but the converse is not generally valid. In addition, a cubic sub-algebra is defined, and new relations between the level subset and a cubic sub-algebra are discussed. After that, cubic ideals and cubic T-ideals under homomorphism are studied, and the image (pre-image) of cubic T-ideals is discussed. Finally, the Cartesian product of cubic ideals in Cartesian product TM-algebras is given. We proved that the product of two cubic ideals of the Cartesian product of two TM-algebras is also a cubic ideal.
Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.
The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .