Polymers (Silicon elastomer) are used lately as a conductive material in electronic application in addition to be transparent, to light. In this paper we prepared polymer films about (1mm) thick and less which contain Ni-metal powder cured in magnetic vacuum furnaces at temperature 120°C in order to arrange or to be oriented the particles of the Ni- powder through the polymer in such a way to be conductive for electric currents. We found that these films are sensitive to any loads on the surface (force per unit area). Using light loads on a unit electric cell from these films, we get an electric transparent sensor that could be used in sensing applications.
Nanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.
Abstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show MoreThe effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr
... Show MoreThis is the first time that the mechanical activity of Hedgehog i leal
smooth muscle is a regular spontaneous contraction to be reported. It was found that the different concent1·ations of papaverine exerted different dcgces of inhibition on ileal smooth muscle. The minimum
effective dose was (0.05) mM. Different concentration of acetylcholine and KCI caused tonic contraction in this kind of smooth muscle. High concentration of papaverine caused inst<mt relaxation in acetylcholine or Kcl- excited muscle. The inhibitory effect of the drug resul ted from the reduction of the available free calcium and caused relaxation.
Objective:Fluorid-containing dental alginate impression materials can exert a considerable reduction in
enamel solubility. The objective was to evaluate the effect of fluoride addition on the setting time and
compressive strength of alginate impression materials.
Methodology: 60 samples were constructed from alginate impression material (30 samples for setting
time test and 30 samples for compressive strength test).Specimens of each test divided into three
subgroup. Group A: 10 specimens of alginate were mixed with distilled water [control], Group B: 10
specimens of alginate were mixed with100-ppm fluoride and Group C:10 specimens of alginate were
mixed with 2%Naf.
Results: the result of setting time test showed t
Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThis paper describes the geotechnical properties of Al-Ammarah soil of Ammarah city in Messan Governorate-southern parts of Iraq. Data and other information taken from numbers of geotechnical reports that performed under the supervision of Consulting Engineering Bureau of Baghdad University. This research is devoted to study the correlation between different physical properties such as (LL, PI, LI, n,t, e) with different mechanical properties such as (qu, cc, cs, SPT). The correlation is verified using simple regression analysis. From the regression results it was found that there is direct correlation between different parameters. By using the correlation-with some information- preliminary investigation stages and studies of any s
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show More