The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each compression process the number of neurons in the hidden layer was changing and calculating the compression ratio, mean square error and peak signal-to-noise ratio to compare the results to get the value of original image. The findings of the research was the desired results as the compression ratio was less than five and a few mean square error thus a large value of peak signal-to-noise ratio had been recorded.
Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreWe explore the transform coefficients of fractal and exploit new method to improve the compression capabilities of these schemes. In most of the standard encoder/ decoder systems the quantization/ de-quantization managed as a separate step, here we introduce new way (method) to work (managed) simultaneously. Additional compression is achieved by this method with high image quality as you will see later.
Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori
The wavelet transform has become a useful computational tool for a variety of signal and image processing applications.
The aim of this paper is to present the comparative study of various wavelet filters. Eleven different wavelet filters (Haar, Mallat, Symlets, Integer, Conflict, Daubechi 1, Daubechi 2, Daubechi 4, Daubechi 7, Daubechi 12 and Daubechi 20) are used to compress seven true color images of 256x256 as a samples. Image quality, parameters such as peak signal-to-noise ratio (PSNR), normalized mean square error have been used to evaluate the performance of wavelet filters.
In our work PSNR is used as a measure of accuracy performanc
... Show More