In this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We derived posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the resultant estimators in terms of their mean squared errors (MSE).Several cases assumed for the parameter of the exponential distribution for data generating of different samples sizes (small, medium, and large). The results were obtained by using simulation technique, Programs written using MATLAB-R2008a program were used. In general, we obtained a good estimations of reliability of the Exponential distribution under the second proposed loss function according to the smallest values of mean squared errors (MSE) for all samples sizes (n) comparative to the estimated values for MSE under the first proposed loss function.
This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreIn this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get of the strengths and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered
... Show MoreIn this work, the methods (Moments, Modified Moments, L-Moments, Percentile, Rank Set sampling and Maximum Likelihood) were used to estimate the reliability function and the two parameters of the Transmuted Pareto (TP) distribution. We use simulation to generate the required data from three cases this indicates sample size , and it replicates for the real value for parameters, for reliability times values we take .
Results were compared by using mean square error (MSE), the result appears as follows :
The best methods are Modified Moments, Maximum likelihood and L-Moments in first case, second case and third case respectively.
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreThis article deals with estimations of system Reliability for one component, two and s-out-of-k stress-strength system models with non-identical component strengths which are subjected to a common stress, using Exponentiated Exponential distribution with common scale parameter. Based on simulation, comparison studies are made between the ML, PC and LS estimators of these system reliabilities when scale parameter is known.
This manuscript presents a new approach to accurately calculating exponential integral function that arises in many applications such as contamination, groundwater flow, hydrological problems and mathematical physics. The calculation is obtained with easily computed components without any restrictive assumptions
A detailed comparison of the execution times is performed. The calculated results by the suggested approach are better and faster accuracy convergence than those calculated by other methods. Error analysis of the calculations is studied using the absolute error and high convergence is achieved. The suggested approach out-performs all previous methods used to calculate this function and this decision is
... Show MoreThe experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.
In this paper, some Bayesian estimators for the unknown scale parameter of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste
... Show MoreIn this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.