The result of concentration varying of mixture methane with argon and neon gas are believed to study the change in electrons energy distribution function and then the change of the electrons transport parameters including the drift velocity, the mean energy, characteristics energy and diffusion coefficient. In the present work,a contemporary developed computer, simulation program known as Bolsig+ is being used for calculating the electron transport parameters.
The temperature distributions are to be evaluated for the furnace of Al-Mussaib power plant. Monte Carlo simulation procedure is used to evaluate the radiation heat transfer inside the furnace, where the radiative transfer is the most important process occurring there. Weighted sum of gray-gases model is used to evaluate the radiative properties of the non gray gas in the enclosure. The energy balance equations are applied for each gas, and surface zones, and by solving these equations, both the temperature, and the heat flux are found.
Good degree of accuracy has been obtained, when comparing the results obtained by the simulation with the data of the designing company, and the data obtained by the zonal method. In
... Show MoreThe primary focus of the study factor reverse polymerization styrene polymer kinetics and distribution weight Aljaia in Blma Aldhur free reverse The study was conducted wi Mamahakah and using the Monte Carlo method
The Boltzmann equation has been solved using (EEDF) package for a pure sulfur hexafluoride (SF6) gas and its mixtures with buffer Helium (He) gas to study the electron energy distribution function EEDF and then the corresponding transport coefficients for various ratios of SF6 and the mixtures. The calculations are graphically represented and discussed for the sake of comparison between the various mixtures. It is found that the various SF6 – He content mixtures have a considerable effect on EEDF and the transport coefficients of the mixtures
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreThe Atmospheric Infrared Sounder (AIRS) on EOS/Aqua satellite provides diverse measurements of Methane (CH4) distribution at different pressure levels in the Earth's atmosphere. The focus of this research is to analyze the vertical variations of (CH4) volume mixing ratio (VMR) time-series data at four Standard pressure levels SPL (925, 850, 600, and 300 hPa) in the troposphere above six cities in Iraq from January 2003 to September 2016. The analysis results of monthly average CH4VMR time-series data show a significant increase between 2003 and 2016, especially from 2009 to 2016; the minimum values of CH4 were in 2003 while the maximum values were in 2016. The vertical distribution of CH4<
... Show MoreThis research aims to identify the means and forms of interactive communication concerning Iraqi topics on the websites of global radio stations, namely Sawa and Monte Carlo. It also seeks to uncover the editorial and artistic interactions related to Iraqi topics on the selected websites chosen as the research sample, comparing them with the editorial interaction within the Iraqi context between the Radio Monte Carlo and Sawa websites.
The research yields several conclusions, including the following:
Iraqis focus their interaction with topics related to Iraq on Facebook for both Radio Monte Carlo and Sawa; Arabs show higher levels of interaction on Twitter with Radio Monte Carlo; Participants on the webs