Pathology reports are necessary for specialists to make an appropriate diagnosis of diseases in general and blood diseases in particular. Therefore, specialists check blood cells and other blood details. Thus, to diagnose a disease, specialists must analyze the factors of the patient’s blood and medical history. Generally, doctors have tended to use intelligent agents to help them with CBC analysis. However, these agents need analytical tools to extract the parameters (CBC parameters) employed in the prediction of the development of life-threatening bacteremia and offer prognostic data. Therefore, this paper proposes an enhancement to the Rabin–Karp algorithm and then mixes it with the fuzzy ratio to make this algorithm suitable for working with CBC test data. The selection of these algorithms was performed after evaluating the utility of various string matching algorithms in order to choose the best ones to establish an accurate text collection tool to be a baseline for building a general report on patient information. The proposed method includes several basic steps: Firstly, the CBC-driven parameters are extracted using an efficient method for retrieving data information from pdf files or images of the CBC tests. This will be performed by implementing 12 traditional string matching algorithms, then finding the most effective ways based on the implementation results, and, subsequently, introducing a hybrid approach to address the shortcomings or issues in those methods to discover a more effective and faster algorithm to perform the analysis of the pathological tests. The proposed algorithm (Razy) was implemented using the Rabin algorithm and the fuzzy ratio method. The results show that the proposed algorithm is fast and efficient, with an average accuracy of 99.94% when retrieving the results. Moreover, we can conclude that the string matching algorithm is a crucial tool in the report analysis process that directly affects the efficiency of the analytical system.
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreIn the present study, MCM-41 was synthesis as a carrier for poorly drugs soluble in water, by the sol-gel technique. Textural and chemical characterizations of MCM-41 were carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). The experimental results were analyzed mesoporous carriers MCM-41. With maximum drug loading efficiency in MCM-41 determined to be 90.74%. The NYS released was prudently studied in simulated body fluid (SBF) pH 7.4 and the results proved that the release of NYS from MCM-41 was (87.79%) after 18 hr. The data of NYS released was found to be submitted a Weibull model with a correlation coefficient of (0.995). The Historical
... Show More
this paper contains preparation of Active carbon surface (AC) from pro so millet grain husks and Loading and activating by Iron oxide and hydrogen peroxide sequentially to obtain surface (ACIPE). The changes of previous processes on Active carbon surface were diagnosed by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy ( SEM ). These surfaces (AC and ACIPE ) were using as adsorbent for removing of congo red dye from aqueous solutions under certain conditions through batch system. More than one kinetic model was applied to congo red dye adsorption process and it was found that the most kinetic model applied to it is a model ( pseudo second order model).
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The problem of the research is focused on importance limited of Iraq industrial companies in application of scientific measurements of supply chains performance, The research sought to achieve a group of goals, the most important are , identifying the strengths and weaknesses in the reality of supply chain in General Company for Cotton Industries, The data and information required are gathered from the dependence company, records through the field observations and personal interviews, the research used some quantitative indicators to measure of supply chain performance, The research reached to many conclusions , the most outstanding among them is the existence of a strong inverse correlatio
... Show MoreNon uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.