Preferred Language
Articles
/
jeasiq-969
Comparing Several Nonlinear Estimators for Regression Function
...Show More Authors

The aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.

 Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.

We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).

The results proved that the (ANN) estimator is the best nonlinear estimator among the others in estimating the export of crude oil Saudi.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Elucidation of the removal of trivalent and divalent heavy metal ions from aqueous solutions using hybrid-porous composite ion-exchangers by nonlinear regression
...Show More Authors

View Publication
Scopus (24)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Tue Feb 26 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Return Variation on Investment as a Function for the Difference of Market Share: An Applied Research on a Sample of Private Banks listed in Iraq Stock Exchange (ISX)
...Show More Authors

    The research specified with study the relation  between the market share for the sample research banks and the amount of the achieved revenues from the investment, where the  dominated belief  that there potentiality enhancing the revenue on investment with the increase of the banks shares in their markets after their success in achieving rates of successive growth in their sales of sales and to a suitable achieve  market coverage for their products and they have dissemination and suitable  promotion activity, the  market share represented the competition  for the banks, and the markets pay attention to the  market share as a strategic objective and to maintain them also increasi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Al-nahrain Journal Of Science
Modified third order iterative method for solving nonlinear equations
...Show More Authors

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Runge-kutta Numerical Method for Solving Nonlinear Influenza Model
...Show More Authors
Abstract<p>The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.</p>
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations
...Show More Authors

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (11)
Scopus
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Statistics
Single and Double Stage Shrinkage Estimators for the Normal Mean with the Variance Cases
...Show More Authors

View Publication
Publication Date
Sun Apr 06 2008
Journal Name
Diyala Journal For Pure Science
Preliminary Test Bayesian –Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Selection of the initial value of the time series generating the first-order self-regression model in simulation modeAnd their impact on the accuracy of the model
...Show More Authors

In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method  and the least squares method and that using the method of simulation model  first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.

                  

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 02 2021
Journal Name
The International Journal Of Nonlinear Analysis And Application
Atan regularized for the high dimensional Poisson regression model
...Show More Authors

Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.

View Publication Preview PDF