Preferred Language
Articles
/
jeasiq-959
On Shrunken Estimation of Generalized Exponential Distribution
...Show More Authors

This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.

The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about behavior of considered estimator are discussed via study the mentioned expressions. These numerical results displayed in annexed tables. Comparisons between the proposed estimator and the classical estimator as well as with some earlier studies were made to shown the effect and usefulness of the considered estimator.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Different estimation methods of reliability in stress-strength model under chen distribution
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
...Show More Authors

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Bayes and Non-Bayes Estimation Methods for the Parameter of Maxwell-Boltzmann Distribution
...Show More Authors

In this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Estimation Methods for Mixed-Random Panel Data Regression Models with Serially Correlated Errors with Application
...Show More Authors

This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Exponential Function of a bounded Linear Operator on a Hilbert Space.
...Show More Authors

In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
On Generalized (α, β) Derivation on Prime Semirings
...Show More Authors
Abstract<p>In this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.</p>
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Generalized Left Derivations with Identities on Near-Rings
...Show More Authors

In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Estimation of Parameters for the Gumbel Type-I Distribution under Type-II Censoring Scheme
...Show More Authors

This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Notes on Weibull Distribution
...Show More Authors

Weibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.

... Show More
View Publication Preview PDF
Crossref