Preferred Language
Articles
/
jeasiq-91
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Using the artificial TABU algorithm to estimate the semi-parametric regression function with measurement errors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.

Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Nonparametric Binary Logistic Regression

In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A Note on the Hierarchical Model and Power Prior Distribution in Bayesian Quantile Regression

  In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the  and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.

Crossref
View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods of Estimating the Parameters and Survival Function of a Log-logistic Distribution with a Practical Application

The Log-Logistic distribution is one of the important statistical distributions as it can be applied in many fields and biological experiments and other experiments, and its importance comes from the importance of determining the survival function of those experiments. The research will be summarized in making a comparison between the method of maximum likelihood and the method of least squares and the method of weighted least squares to estimate the parameters and survival function of the log-logistic distribution using the comparison criteria MSE, MAPE, IMSE, and this research was applied to real data for breast cancer patients. The results showed that the method of Maximum likelihood best in the case of estimating the paramete

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
The robust estimators of reliability function using sample technique AM & POT

Abstract 

The Phenomenon of Extremism of Values ​​(Maximum or Rare Value) an important phenomenon is the use of two techniques of sampling techniques to deal with this Extremism: the technique of the peak sample and the maximum annual sampling technique (AM) (Extreme values, Gumbel) for sample (AM) and (general Pareto, exponential) distribution of the POT sample. The cross-entropy algorithm was applied in two of its methods to the first estimate using the statistical order and the second using the statistical order and likelihood ratio. The third method is proposed by the researcher. The MSE comparison coefficient of the estimated parameters and the probability density function for each of the distributions were

... Show More
Crossref
View Publication Preview PDF