In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-steps method depends, in estimation, on (OLS) method, which is sensitive for the existence of abnormality in data or contamination of error; robust methods have been proposed such as LAD & M to strengthen the two-steps method towards the abnormality and contamination of error. In this research imitating experiments have been performed, with verifying the performance of the traditional and robust methods for Local Linear kernel LLPK technique by using two criteria, for different sample sizes and disparity levels.
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
This research work as an attempt has been made to find robust estimations for Hotelling-T2 test when the data is from amultivariate normal distribution and the sample of the multivariate contain outliers also this research gives an easily high breakdown point robust consistent estimators of multivariate location and dispersion for multivariate analysis by using two types of robust estimators, of these methods are minimum covariance determinant estimator and reweighted minimum covariance determinant estimator.
Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi
... Show MoreThis research presents a study of using an additive for the objective of increasing the setting time of a material used in several aspects in the constructional field, this material is “Local-Gypsum” which is locally called “Joss”, and the additive used in this study is “Trees Glue Powder” denoted by “TGP”. Nine mixtures of Local-gypsum (joss) had been experimented in the current study to find their setting time, these mixes were divided into three groups according to their water-joss ratios (W/J) (0.3, 0.4 and 0.5), and each group was sub-divided into three sub-groups according to their TGP contents (0.0%, 0.3% and 0.6%). It was found that, when TGP is added with the
This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem. The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.