Preferred Language
Articles
/
jeasiq-751
Building discriminant function for repeated measurements data under compound symmetry (CS) covariance structure and applied in the health field
...Show More Authors

Discriminant analysis is a technique used to distinguish and classification an individual to a group among a number of  groups based on a linear combination of a set of relevant variables know discriminant function. In this research  discriminant analysis used to analysis data from repeated measurements design. We  will  deal  with the problem of  discrimination  and  classification in the case of  two  groups by assuming the Compound Symmetry covariance structure  under  the  assumption  of  normality for  univariate  repeated measures data.

 

The importance of this research represented to find the best model  to classify  a  group of  patients who  suffer  from diabetes.  For  the purpose of studying the effects of  the number of correlations, variances, and umber of  repeated  measurements  on the performance of classification rules for this  type of  data  based on monthly measurements  of  glycosylated  hemoglobin (HbA1C) in the blood was taken in three stages, which  is  the beginning  of  the experiment, and after three months, and  then  six  months for two groups of patients, the first group consists of  (38)  patients  was  suffered  from  diabetes  type (I)  and  the second group includes (33) patients suffered from diabetes type (II).

 

And through this research, concluded that when the number of parameters began to increase. Thus, the apparent error rate  begin to increasing, and this is what reduces the efficiency of classification rules for this type of data. And  we  recommend  by  using  the linear discriminant function when you focus on the least number of parameters to build the classification rule. And quadratic discriminant procedure Represented by equal the variance and different correlation parameters  under compound symmetry covariance structures

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
A Novel Technique for Secure Data Cryptosystem Based on Chaotic Key Image Generation
...Show More Authors

The advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Geological Journal
Development of 3D Geological Model and Analysis of the Uncertainty in a Tight Oil Reservoir in the Halfaya Oil Field
...Show More Authors

A geological model was built for the Sadi reservoir, located at the Halfaya oil field. It is regarded as one of the most significant oilfields in Iraq. The study includes several steps, the most essential of which was importing well logs from six oil wells to the Interactive Petrophysics software for conducting interpretation and analysis to calculate the petrophysical properties such as permeability, porosity, shale volume, water saturation, and NTG and then importing maps and the well tops to the Petrel software to build the 3D-Geological model and to calculate the value of the original oil in place. Three geological surfaces were produced for all Sadi units based on well-top data and the top Sadi structural map. The reservoir has

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Iraqi Journal Of Agricultural Sciences, 2018, 49(2), Pp. 179–187
Estimation of some genetic parameters for grain yield and its components of maize under watered and water stress
...Show More Authors

Scopus (8)
Scopus
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Study of the proton halo structure of nuclei 23Al and 27P using the binary cluster model
...Show More Authors

The neutron, proton, and matter densities of the ground state of the proton-rich 23Al and 27P exotic nuclei were analyzed using the binary cluster model (BCM). Two density parameterizations were used in BCM calculations namely; Gaussian (GS) and harmonic oscillator (HO) parameterizations. According to the calculated results, it found that the BCM gives a good description of the nuclear structure for above proton-rich exotic nuclei. The elastic form factors of the unstable 23Al and 27P exotic nuclei and those of their stable isotopes 27Al and 31P are studied by the plane-wave Born approximation. The main difference between the elastic form factors of unstable nuclei and the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Iraqi Journal Of Physics
Study of the nuclear structure of halo nuclei 23O and 24F using the two-body model
...Show More Authors

The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of  within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Aug 03 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The impact of the procedures of the Banking Compliance Controller on the decision to grant credit and default: Applied research in a sample of Iraqi banks
...Show More Authors

Abstracts:

The Central Bank is the backbone of the banking system as a whole, and in order to maintain the banking system, one of the most important functions that the Central Bank performs is the function of supervising and controlling banks, with several tools and methods, and one of the most important of these tools is its creation of the function of a compliance observer, which obligated commercial banks to appoint a person in A bank that performs this function according to certain conditions and granting it some powers that would build a sound and compliant banking system. The function of the compliance observer is to follow up on the bank’s compliance with the instructions and decisions issued by

... Show More
View Publication Preview PDF