The research (Relationship of Communities of practice in adoption of, Strategic Change choices) aims to diagnose and interpretation of correlation nature between Communities of practice deportation (participation and spreading knowledge, confidence, social capital build) deportation strategic change choices (reengineering business process, business re-structuring, business innovation) in construction companies in the Iraqi Ministry of Construction and Housing, the research tested 4 construction companies working in investing sector in Iraq, the research applied on a sample of 102 persons who participated in Communities of practice distributed in several administrative levels (directors, division directors, project directors and engineers) the research used questionnaire as a main tool for data and statistical tools tool to extract the results, testing and analysis. The most significant result of the research is the obvious correlation relationship of Communities of practice in strategic change choices and the best choice for restructuring business. and there is a validity of correlation research samples and according to these findings has developed a set of recommendations and the most important was: the construction company managers must make more attention on Communities of practice than working as individuals because the trust between the individuals of these groups will become more active when they activate the participation principal and spreading knowledge among them and the more were serious attempts to build social capital through official reports to participate in meeting deals with the reality of the companies and the development of new practices by using practical side of this dialogue, as well as the allocation of special knowledge administration division to care of knowledge management tools and works to facilitate the participation and spreading knowledge among departments during and after the regular meetings based on trust, so as to enhance social capital which is reflected on , Strategic Change choices awareness.
The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MoreThe research aimed to prepare muscle elongation exercises for the arms with high intensity in which the training methods for young blind fencers vary, and to identify the effect of the diversity of muscle elongation exercises for the arms with high intensity on the cellular basal efficiency (lactic acid and sodium bicarbonate) and pulmonary respiration for young blind weapon fencers in terms of sports technology, and the experimental approach was adopted by designing the experimental and equal control groups, and the limits of the research community were represented by young fencers with shish weapon under the age of (20) years in the Army Sports Club, whose number is Total (15) swordsmen, continuing their training for the sports season (20
... Show MoreАрхив всех научных статей сборников конференций и журналов по направлению Филология.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
Irrigation scheduling techniques is one of the suggested solutions for water scarcity problem. The study aims to show the possibility of using practical and applicable irrigation scheduling program which was designed by Water Resources Department at the University of Baghdad by using Spreadsheet Formulas for Microsoft Excel program, version 2007, with some modification to generalize it and made it applicable to various climatic zone and different soil types, as a salvation for the shortage of irrigation water inside the irrigation projects. Irrigation projects which incidence of Tigris River basin will be taken as an applicable example. This program was based on water budgeting and programmed depending on scientific concepts which facili
... Show More
ملخص البحث:
ان الله تعالى هو الذي خلق جميع المخلوقات ، والذي بيده الموت والحياة وان كل هذه المخلوقات تحتاج الى اوامر ، وهذه الاوامر الالهية وجهها الله لعبادة بوساطة انبياءه ( عليهم السلام) فكانوا هم اول المستسلمين والمنقادين لأوامره ، فجاءت الآيات الكريمة مخاطبة للأنبياء واقوامهم بشكل عام ولنبينا محمد (r) بشكل خاص.
اما عن المضمون البحثي فقد جاءت مادته مقسمة الى ثل
... Show MoreIn this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreIn this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are dis
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show More