In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
The aim of this study is to design a proposed model for a document to insure the mistakes of the medical profession in estimating the compensation for medical errors. The medical profession is an honest profession aimed primarily at serving human and human beings. In this case, the doctor may be subject to error and error , And the research has adopted the descriptive approach and the research reached several conclusions, the most prominent of which is no one to bear the responsibility of medical error, although the responsibility shared and the doctor contributes to them, doctors do not deal with patients according to their educational level and cultural and there are some doctors do not inform patients The absence of a document to insu
... Show MoreProductivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.
In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe
... Show MoreRecommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreThe problem of internal sulfate attack in concrete is widespread in Iraq and neighboring countries.This is because of the high sulfate content usually present in sand and gravel used in it. In the present study the total effective sulfate in concrete was used to calculate the optimum SO3 content. Regression models were developed based on linear regression analysis to predict the optimum SO3 content usually referred as (O.G.C) in concrete. The data is separated to 155 for the development of the models and 37 for checking the models. Eight models were built for 28-days age. Then a late age (greater than 28-days) model was developed based on the predicted optimum SO3 content of 28-days and late age. Eight developed models were built for all
... Show MoreDecision-makers in each country work to define a list of internal and external interests, goals and threats to their countries according to the nature of their awareness of these interests, goals and threats.
Hence, Iraq is not an exception to this rule, and the process of evaluating its interests and the objectives of its foreign policy is subject to the pattern of awareness of decision-makers and the influencing forces in defining its basic interests, which often witness some kind of difference in defining them, evaluating their importance and determining the size of the threats they face. And among these interests and threats that have witnessed a difference in the assessment of their
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show More
Praise be to God, and prayers and peace be upon our master Muhammad, the Messenger of God, and upon his family, companions, and those who are guided by his guidance.
Then:
Our Islamic jurisprudence and its basic principles are fixed, namely: the Noble Qur’an, then the Prophet’s Sunnah, then consensus, then analogy. However, it is characteristic of what makes it developed to meet the requirements of renewed life, including: sent interests, custom, approval, blocking pretexts, changing times. That is why it went through different stages, growth, brilliance, stagnation and endowment; Therefore, many scholars of Islamic jurisprudence divided its stages into four sections: the stage of inf
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show More