In this research, has been to building a multi objective Stochastic Aggregate Production Planning model for General al Mansour company Data with Stochastic demand under changing of market and uncertainty environment in aim to draw strong production plans. The analysis to derive insights on management issues regular and extra labour costs and the costs of maintaining inventories and good policy choice under the influence medium and optimistic adoption of the model of random has adoption form and had adopted two objective functions total cost function (the core) and income and function for a random template priority compared with fixed forms with objective function and the results showed that the model of two phases with k = 4 is the best model of random which contributed to reducing costs by approximately 7%. It was also a statement that the change in the total costs will be changed by the possibilities associated with cases predicted demand (scenarios) where we note the low cost and with a high probability of low demand. In contrast, the total cost increases with increasing demand. Because the change in the possibilities leads to change in the Production plan for future. As well as the building and solving model multi-objectives by constraint method improved (augmented) and the results were derived a set of acceptable solutions rather than a single solution and thus can be a decision-maker to choose the best solution for the specific case of the optimization problem of multiple objectives, was Form solution using the developed software GAMS
In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreMarkov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show MoreArsenic is a prevalent and pervasive environmental contaminant with varied amounts in drinking water. Arsenic exposure causes cancer, cardiovascular, liver, nerve, and ophthalmic diseases. The current study aimed to find the best conditions for eliminating arsenic from simulated wastewater and their effect on biomarkers of hepatic in mice. Adsorption tests including pH, contact duration, Al-kheriat dosage, and arsenic concentrations were evaluated. Seventy-two healthy albino mice (male) were accidentally allocated into nine groups (n = 8), the first group was considered as healthy control, the second group (AL-Kheriat), and other groups received AL-Kheriat and arsenic 25, 50, 75, 100, 125, 150 and 175 mg/kg, respectively. Next 10 days, the
... Show MoreMonitoring the river’s water quality is important to predict the environmental risk. The Tigris River is Baghdad’s main source for living organisms, drinking water, and agro-industrial purposes. Three selected sites were carried out using different water quality parameters from July 2017 to April 2018 in the Tigris River in Baghdad. Fourteen water quality parameters: water temperatures, turbidity, electrical conductivity, pH, calcium, magnesium, chloride, sulfate, phosphate, dissolved oxygen (DO), alkalinity, total hardness, total dissolved substances TDS, and biological oxygen demand (BOD5). According to CCME WQI analysis, the water quality of Tigris River water was Fair for aqua
Background: The healing process involves the restoration of the body’s structural integrity. The extracellular matrix, blood cells, cytokines, and growth factors are all involved in this dynamic, intricate, multicellular process. Hemostasis, the inflammatory phase, the proliferative phase, and the maturation phase are all included. Opuntia ficus-indica oil (OFI) and Punica grantum (PGS) oil are extensively used natural treatments that are regarded as advantageous for their sedative, spasmolytic, and anti-inflammatory properties, as well as for angiogenesis promotion, fibroblast increase, collagen production and deposition, and extracellular-matrix remodeling. Materials and methods: Twenty-four New Zealand rab
... Show MoreThis research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr
... Show More