Preferred Language
Articles
/
jeasiq-587
Comparison of some robust methods to estimate parameters of partial least squares regression (PLSR)

   The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.

 There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unrelated with each other, which are called, the components. These components are orthogonal and independent from each other.

The method of partial least squares PLS is failed in dealing with data that consist of the presence of Outliers values and hence the success of this method depends on the absence of such outliers values that have undesirable effect on the results. In order to reduce the presence of these values, we resorted to use the robust methods.

In this research a method of PLSKURSD that applied SIMPLS algorithms on variance-covariance robust matrix. Also the proposed method MPLSKURSD are used which is a modified method to the PLSKURSD method. parameters  linear regression model by partial least squares(PLS) is compared with modalities robust partial least squares through the simulation experiments depends on the presence of several types of outlier values of data for different rates of pollution, volumes of samples, and variables dimensions

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL

Scopus
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare Estimate Methods of Parameter to Scheffʼe Mixture Model By Using Generalized Inverse and The Stepwise Regression procedure for Treatment Multicollinearity Problem

Mixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.

     Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.

     to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Maximum Likelihood Method And Bayesian Method For Estimating Some Non-Homogeneous Poisson Processes Models

Abstract

The Non - Homogeneous Poisson  process is considered  as one of the statistical subjects which had an importance in other sciences and a large application in different areas as waiting raws and rectifiable systems method , computer and communication systems and the theory of reliability and many other, also it used in modeling the phenomenon that occurred by unfixed way over time (all events that changed by time).

This research deals with some of the basic concepts that are related to the Non - Homogeneous Poisson process , This research carried out two models of the Non - Homogeneous Poisson process which are the power law model , and Musa –okumto ,   to estimate th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Journal Of Administration And Economics
Using the Maximum Likelihood Method with a Suggested Weight to Estimate the Effect of Some Pollutants on the Tigris River- City of Kut

The aim of this research is to use robust technique by trimming, as the analysis of maximum likelihood (ML) often fails in the case of outliers in the studied phenomenon. Where the (MLE) will lose its advantages because of the bad influence caused by the Outliers. In order to address this problem, new statistical methods have been developed so as not to be affected by the outliers. These methods have robustness or resistance. Therefore, maximum trimmed likelihood: (MTL) is a good alternative to achieve more results. Acceptability and analogies, but weights can be used to increase the efficiency of the resulting capacities and to increase the strength of the estimate using the maximum weighted trimmed likelihood (MWTL). In order to perform t

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 02 2024
Journal Name
Methods And Objects Of Chemical Analysis
Simultaneous Spectrophotometric Determination of Piroxicam, Naproxen, Diclofenac Sodium and Mefenamic Acid in Pharmaceutical Formulations by Partial Least Squares Method

A chemometric method, partial least squares regression (PLS) was applied for the simultaneous determination of piroxicam (PIR), naproxen (NAP), diclofenac sodium (DIC), and mefenamic acid (MEF) in synthetic mixtures and commercial formulations. The proposed method is based on the use of spectrophotometric data coupled with PLS multivariate calibration. The Spectra of drugs were recorded at concentrations in the linear range of 1.0 - 10 μg mL-1 for NAP and from 1.0 - 20 μg mL-1 for PIR, DIC, and MEF. 34 sets of mixtures were used for calibration and 10 sets of mixtures were used for validation in the wavelength range of 200 to 400 nm with the wavelength interval λ = 1 nm in methanol. This method has been used successfully to quant

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution

 

     We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Scopus (1)
Scopus Crossref