Preferred Language
Articles
/
jeasiq-41
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared error loss function and weighted squared error loss function) in the cases of the three different sets of prior distributions .Simulations is employed to obtain results. And determine the best estimator according to the smallest value of mean squared error and weighted mean squared error. We found  that the best estimation for the parameter for all sample sizes (n) , when the double prior distribution for  is SRIG - the natural conjugate family of priors distribution with values (a=5, b=0.5, =8, =0.5) and (a=8, b=1, =5, =1) for the  true value of  respectively .Also ,we obtained the best estimation for  when the double prior distribution for  is the natural conjugate family of priors-non-informative distribution with values(=0.5, =5, c=1) for  the true value of ().

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Robust Estimators for Estimate parameters logistic regression model to Binary Response – using simulation)).

 

 The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.                                                          

Among the problems that appear as a result of the use of some statistical methods I

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Applying the Shrinkage Technique for Estimating the Scale Parameter of Weighted Rayleigh Distribution

This paper includes the estimation of the scale parameter of weighted Rayleigh distribution using well-known methods of estimation (classical and Bayesian). The proposed estimators were compared using Monte Carlo simulation based on mean squared error (MSE) criteria. Then, all the results of simulation and comparisons were demonstrated in tables. 

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Discussing Fuzzy Reliability Estimators of Function of Mixed Probability Distribution By Simulation

This paper deals  with constructing mixed probability distribution  from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are (  .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β)  are estimated by three different methods, which are  maximum likelihood, and  Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Partial Least Squares and Principal Components Methods by Simulation

Abstract                                                                                              

The methods of the Principal Components and Partial Least Squares can be regard very important methods  in the regression analysis, whe

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Genetic Algorithm to Estimate the Parameters of the Gumbel Distribution Function by Simulation

In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as  the Bayes method. The comparison was made using the mean error squares (MSE), where the best  estimator  is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).

Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Comparison of Some Suggested Estimators Based on Differencing Technique in the Partial Linear Model Using Simulation

In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized  jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.

Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Tree regression (TR), and Negative binomial regression (NBR) by Using Simulation.

            In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution

In this paper, some estimators of the unknown shape parameter and reliability function  of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively

Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF