Preferred Language
Articles
/
jeasiq-372
Use aggregate slide estimate additive splines estimation for the diagnosis of non-linear composite model self-regression with practical application
...Show More Authors

Nonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines  estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property  to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a good identification of the NARX models and the BIC criteria is the best criterion used to determine the correct orders of the selected models. 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 02 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Using the wavelet analysis to estimate the nonparametric regression model in the presence of associated errors
...Show More Authors

Abstract The wavelet shrink estimator is an attractive technique when estimating the nonparametric regression functions, but it is very sensitive in the case of a correlation in errors. In this research, a polynomial model of low degree was used for the purpose of addressing the boundary problem in the wavelet reduction in addition to using flexible threshold values in the case of Correlation in errors as it deals with those transactions at each level separately, unlike the comprehensive threshold values that deal with all levels simultaneously, as (Visushrink) methods, (False Discovery Rate) method, (Improvement Thresholding) and (Sureshrink method), as the study was conducted on real monthly data represented in the rates of theft crimes f

... Show More
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Using the Logistic Regression Model in Studding the Assistant Factors to Diagnose Bladder Cancer
...Show More Authors

The cancer is one of the biggest health problems that facing the world . And  the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Several Nonlinear Estimators for Regression Function
...Show More Authors

The aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.

 Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.

We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).

The results proved that the (ANN) estimator is the best nonlinear estimator am

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
K-Nearest Neighbor Method with Principal Component Analysis for Functional Nonparametric Regression
...Show More Authors

This paper proposed a new  method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates  are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It  utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA))  for measureing the closeness between curves.  Root Mean Square Errors is used for the  implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when  the cov

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Measuring and analyzing the demand function for agricultural imports in Iraq for the period (1980-2012) in Autoregressive Distributed Lag Model(ARDL)
...Show More Authors

Abstract:

The issues related to foreign trade is a broad field for discussions and captures the interest of economists for their contribution to the process of economic development in the economies of the countries, especially developing ones. The imports of goods and services in foreign trade constitute an important part of the local by which the economy gets goods and services that the economy cannot produce because of the incompetent base of production. Further, the demand function of imports occupied a good deal of the attention of researchers in the field of international economics for which agricultural imports constitute an important part. The reason for the interest in the subject is due to its im

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES
...Show More Authors

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Importance of Banking Merger To Promote Iraqi Banks Faltering and Slow Using The Logistic Regression Model
...Show More Authors

Abstract

The research examined with the importance banking merger to address the situation of Troubled banks in Iraq, Through The use of Logistic Regression Model. . The study attempted to present a conceptual aspect of banking merger and logistic regression, as well as the applied aspect which includes a sample consisting of six private Iraqi banks, and the hypothesis of the study is that the promotion of mergers among banks has positive impacts on improving the efficiency of performance of troubled banks, which contributes to the increase of banking services, raise of their financial indicators and the high liquidity and profits of the new banking entity as it is a way to overcome the prevailing banking crises.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
The Use of the Regression Tree and the Support Vector Machine in the Classification of the Iraqi Stock Exchange for the Period 2019-2020
...Show More Authors

 The financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine

... Show More
View Publication Preview PDF
Crossref (1)
Crossref