Preferred Language
Articles
/
jeasiq-3046
Classification of Iraqi Children According to Their Nutritional Status Using Fuzzy Logic
...Show More Authors

In this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most important contributing factors to diseases and mortality. This research aims to develop a fuzzy classification system to assist in classifying the nutritional status of children under the age of five in Iraq using fuzzy logic, the fuzzy rules in the classification are derived from the Mamdani method. Therefore, by classifying the nutritional status of children more accurately, we reduce the chances of misdiagnosis and provide them with appropriate treatment more precisely to improve the health level of children and build a society more immunity and a good level of health.

The Cluster Sampling size is 16,487 observations for children under 5 years old in Iraq, consisting of 8,427 males and 8,060 females. The sample was divided into 12 age categories. The results showed that age categories less than 2, 4, 6, and 8 months had a underweight of approximately 30%. On the other hand, the age categories from 8 months to less than 2 years had a overweight of approximately 30%. While for the rest of the children in the other age groups, they had a normal nutritional status.

 

Paper type: Research paper

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 14 2015
Journal Name
Spe North Africa Technical Conference And Exhibition
Feasibility of Gas Lift to Increase Oil Production in an Iraqi Giant Oil Field
...Show More Authors
Abstract<p>Gas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in</p> ... Show More
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sat Nov 12 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The possibility of applying the PATROL model to assess financial performance in Iraqi banks
...Show More Authors

The aim of the research is to identify the suitability of a patrol model in evaluating the financial performance of Iraqi banks. The financial reports of five Iraqi commercial banks were approved as a sample for research for the period from 2015 to 2020. The most common financial ratios were adopted for the purpose of measuring the five elements of the model, which are capital adequacy, profitability, credit risk, bankal efficiency and liquidity. The results showed the possibility of using the PATROL model in evaluating the performance of Iraqi banks, as it gave a realistic image of the reality of Iraqi banks in terms of high capital adequacy index and high liquidity, as well as fluctuation in profitability index, not to mention the prob

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (5)
Clarivate Crossref
Publication Date
Thu Jan 04 2024
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Analysis of the performance of the stock market in light of inflation : empirical research in the Iraqi Stock Exchange
...Show More Authors

Abstract:

                The aim of this research to try to determine the type of expected relationship between inflation as the explanatory variable and market performance as a dependent variable, for that used data issued and published by the Central Bank of Iraq and the Iraqi Stock Exchange for a sample consisting of (159) observations using the intentional or intentional sampling method for the period extending between the months (January 2010 to March 2023), in the light of each of the Consumer Price Index (CPI), the Iraqi Stock Exchange Index, the number of traded shares and the number of market capital shares to ex

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Computers &amp; Electrical Engineering
Utilizing different types of deep learning models for classification of series arc in photovoltaics systems
...Show More Authors

View Publication
Crossref (14)
Crossref