Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variability. In the practical sphere it is however more realistic to capture the most significant parameters of the research design through the best fitted candidate model for this research. Simulation studies demonstrate that the mixed-effects conditional logistic regression is more accurate for pollution studies, with fixed-effects conditional logistic regression models potentially generating flawed conclusions. This is because mixed-effects conditional logistic regression provides detailed insights on clusters that were largely overlooked by fixed-effects conditional logistic regression.
A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
The control charts are one of the scientific technical statistics tools that will be used to control of production and always contained from three lines central line and upper, lower lines to control quality of production and represents set of numbers so finally the operating productivity under control or nor than depending on the actual observations. Some times to calculating the control charts are not accurate and not confirming, therefore the Fuzzy Control Charts are using instead of Process Control Charts so this method is more sensitive, accurate and economically for assisting decision maker to control the operation system as early time. In this project will be used set data fr
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
This research introduce a study with application on Principal Component Regression obtained from some of the explainatory variables to limitate Multicollinearity problem among these variables and gain staibilty in their estimations more than those which yield from Ordinary Least Squares. But the cost that we pay in the other hand losing a little power of the estimation of the predictive regression function in explaining the essential variations. A suggested numerical formula has been proposed and applied by the researchers as optimal solution, and vererifing the its efficiency by a program written by the researchers themselves for this porpuse through some creterions: Cumulative Percentage Variance, Coefficient of Determination, Variance
... Show MoreIn this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that
... Show MoreIn this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
An Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi
Inelastic longitudinal electron scattering form factors have been calculated for isoscaler transition
T = 0 of the (0+ ®2+ ) and (0+ ®4+ ) transitions for the 20Ne ,24Mg and 28Si nuclei. Model
space wave function defined by the orbits 1d5 2 ,2s1 2 and 1d3 2 can not give reasonable result for
the form factor. The core-polarization effects are evaluated by adopting the shape of the Tassie-
Model, together with the calculated ground Charge Density Distribution CDD for the low mass 2s-1d
shell nuclei using the occupation number of the states where the sub-shell 2s is included with an
occupation number of protons (a ) .