Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variability. In the practical sphere it is however more realistic to capture the most significant parameters of the research design through the best fitted candidate model for this research. Simulation studies demonstrate that the mixed-effects conditional logistic regression is more accurate for pollution studies, with fixed-effects conditional logistic regression models potentially generating flawed conclusions. This is because mixed-effects conditional logistic regression provides detailed insights on clusters that were largely overlooked by fixed-effects conditional logistic regression.
The study addresses the problem of stagnation and declining economic growth rates in Arab countries since the eighties till today after the progress made by these countries in the sixties of the last century. The study reviews the e
... Show MorePurpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement. Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both. Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. Findings: The Mean Circular Erro
... Show MoreFounding a System to secure deposits and protecting the depositors is considered one of the important and exchanged subjects out there in the banking system/field in Iraq at the current time, and the reason behind the exchange and spread of this subject is due to the financial crisis of which the banking sector is suffering from and the stumbling of many banks, those factors have had led to the insecurity of the depositors and their mistrust towards banks, thus, it is necessary to create a system to secure deposits in which depositors would be compensated for the losses caused by the banks' failures. in addition, it could be a countermeasure system which maintains the banking stability, protects the rights of depositors and gains
... Show More
This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo
... Show MoreIn linear regression, an outlier is an observation with large residual. In other words, it is an observation whose dependent-variable value is unusual given its values on the predictor variables. An outlier observation may indicate a data entry error or other problem.
An observation with an extreme value on a predictor variable is a point with high leverage. Leverage is a measure of how far an independent variable deviates from its mean. These leverage points can have an effect on the estimate of regression coefficients.
Robust estimation for regression parameters deals with cases that have very high leverage, and cases that are outliers. Robust estimation is essentially a
... Show MoreIn this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show MoreThe research aims to determine the strength of the relationship between time management and work pressure and administrative leadership, where he was taken a sample of (47) of the administrative leadership at the Higher Institute of security and administrative development in the Ministry of Interior was used questionnaire as a key tool in collecting data and information and analyzed the answers to the sample surveyed by using Statistical program (spss) in the arithmetic mean of the calculation and test (t) and the correlation coefficient, the research found the most important results: the existence of significant moral positive relationship between both time management and work pressure and administrative leadership, the leadership of th
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreThis growing interest of the international scientific specialized commissions is due to the role that the audit committee can play, as one of companies’ governance tools, to increase the accuracy and transparency of the financial information disclosed by the companies, through its oversight role on the process of preparing financial reports, its supervision on the internal audit function within the companies, and supporting its independency, as well as coordinating the efforts between the internal control unites and the external auditor represented by the (Board of Supreme Audit) to clear the observations and irregularities in order to reduce the fraud cases.
This research was built on an applied sample of audit committee works
... Show More