Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variability. In the practical sphere it is however more realistic to capture the most significant parameters of the research design through the best fitted candidate model for this research. Simulation studies demonstrate that the mixed-effects conditional logistic regression is more accurate for pollution studies, with fixed-effects conditional logistic regression models potentially generating flawed conclusions. This is because mixed-effects conditional logistic regression provides detailed insights on clusters that were largely overlooked by fixed-effects conditional logistic regression.
The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p
... Show MoreAbstract:
This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.
The comparison was done by simulation using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood with sample size (n = 30) is the best to represent the maternal mortality data after it has been reliance value param
... Show MoreThe marketing logistic chain, as an integrated system aimed to balance the achievement of its main opposite objectives which represented in the access to the best service presented to the customer with lowest possible logistic costs especially the transportation costs, where encourages the researcher to choose the second objective as a field of this study in order to reduce the transportation costs in the final link of marketing logistic chain which related to delivering of fuel oil to the customer that falls within organizational responsibilities of the company under consideration (Oil Marketing Company) and also known in a brief name by (SOMO) through two methods, the first is by functioning quantative techniques by using trans
... Show MoreThe problem of the study and its significance:
Due to the increasing pressures of life continually, and constant quest behind materialism necessary and frustrations that confront us daily in general, the greater the emergence of a number of cases of disease organic roots psychological causing them because of severity of a lack of response to conventional treatments (drugs), and this is creating in patients a number of emotional disorders resulting from concern the risk of disease
That is interested psychologists and doctors searchin
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
Weibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreThis work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreFifty-four Sprague-Dawley albino adult male rats were classified into three main groups each of 18 rats treated for a particular duration (1,2, and 4) weeks respectively. Each group was subdivided into three subgroups each of six rats treated as follows; group (1) serve as normal control, group (2, and 3) intra-peritoneal treated with TiO2NPs (50,200) mg/kg respectively, body *weight of all rats was measured before and after the experiment, then rats were dissected at the end of each experiment and the weights of the thyroid was measured. The result showed a highly significant decrease (p<0.01) in thyroid gland weight, a highly significant increase (p<0.01) in body weights and TSH, while a highly significant decrease (p&
... Show MoreA field Experiment was carried out in Baghdad for the purpose of compare five horticulture machines during used two types of fuel deffirance in octane number, normal and super fuel which produced in Iraqi and measuring the vibrations transmitted of the three axes are longitudinal X , lateral Y and vertical Z from handlebar in (Mowers) to the operator which walks behind the mower, and the determine of the productivity practical of cutting, productivity passing and fuel consumption. Experiment Factorial used with two factors, The first factor was Five Mowers vary in width , types, weight and company manufacturer, The Second factor was the types of fuel used internal combination engine horticulture mowers were Normal fuel with Octane Number 82
... Show More