Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variability. In the practical sphere it is however more realistic to capture the most significant parameters of the research design through the best fitted candidate model for this research. Simulation studies demonstrate that the mixed-effects conditional logistic regression is more accurate for pollution studies, with fixed-effects conditional logistic regression models potentially generating flawed conclusions. This is because mixed-effects conditional logistic regression provides detailed insights on clusters that were largely overlooked by fixed-effects conditional logistic regression.
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreThe objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also
... Show MoreIn this research was the study of a single method of estimation and testing parameters mediating variables (Mediation) in a specimen structural equations SEM a bootstrap method, for the purpose of application of the integrated survey of the situation Marital data and health mirror Iraqi (I-WISH) for the year 2011 from the Ministry of Planning - device Central Bureau of Statistics, and applied to the appropriate data from the terms of the data to a form of structural equation SEM using factor analysis affirmative (Confirmatory Factor analysis) CFA As a way to see the match variables that make up the model, and after confirming the model matching or suitability are having the effect of variables mediation in the model tested by the
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p
... Show MoreThis research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r
... Show MoreThe marketing logistic chain, as an integrated system aimed to balance the achievement of its main opposite objectives which represented in the access to the best service presented to the customer with lowest possible logistic costs especially the transportation costs, where encourages the researcher to choose the second objective as a field of this study in order to reduce the transportation costs in the final link of marketing logistic chain which related to delivering of fuel oil to the customer that falls within organizational responsibilities of the company under consideration (Oil Marketing Company) and also known in a brief name by (SOMO) through two methods, the first is by functioning quantative techniques by using trans
... Show MoreThe advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con
... Show More