Preferred Language
Articles
/
jeasiq-2608
Estimating the Population Mean in Stratified Random Sampling Using Combined Regression with the Presence of Outliers
...Show More Authors

In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved that the Minimum covariance determinant (MCD) method is highly efficient at all sample sizes (n=35, 75, 150, 200, 500) and then followed by the method of the smallest ellipse Minimum volume Ellipsoid (MVE) handles outliers in the dataset, where it has lower values (MSE).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Scheff'e Model of the Mixture
...Show More Authors

Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.

    To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposal of Using Principle of Maximizing Entropy of Generalized Gamma Distribution to Estimate the Survival probabilities of the Population in Iraq
...Show More Authors

In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on the basis of the method of the Cen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Quadratic Form Ratio Multiple Test to Estimate Linear Regression Model Parameters in Big Data with Application: Child Labor in Iraq
...Show More Authors

              The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances.  From the diversity of Big Data variables comes many challenges that  can be interesting to the  researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
K-Nearest Neighbor Method with Principal Component Analysis for Functional Nonparametric Regression
...Show More Authors

This paper proposed a new  method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates  are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It  utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA))  for measureing the closeness between curves.  Root Mean Square Errors is used for the  implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when  the cov

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
comparison between the methods estimate nonparametric and semiparametric transfer function model in time series the Using simulation
...Show More Authors

 The transfer function model the basic concepts in the time series. This model is used in the case of multivariate time series. As for the design of this model, it depends on the available data in the time series and other information in the series so when the representation of the transfer function model depends on the representation of the data In this research, the transfer function has been estimated using the style nonparametric represented in two method  local linear regression and cubic smoothing spline method The method of semi-parametric represented use semiparametric single index model, With four proposals, , That the goal of this research is comparing the capabilities of the above mentioned m

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Using Regression Analysis as Analytical Procedure to Facilitate the Decision-Making Process in The Tax Audit: An Applied Research in the General Commission of Taxes
...Show More Authors

This research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods of Estimating the Parameters and Survival Function of a Log-logistic Distribution with a Practical Application
...Show More Authors

The Log-Logistic distribution is one of the important statistical distributions as it can be applied in many fields and biological experiments and other experiments, and its importance comes from the importance of determining the survival function of those experiments. The research will be summarized in making a comparison between the method of maximum likelihood and the method of least squares and the method of weighted least squares to estimate the parameters and survival function of the log-logistic distribution using the comparison criteria MSE, MAPE, IMSE, and this research was applied to real data for breast cancer patients. The results showed that the method of Maximum likelihood best in the case of estimating the paramete

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Tobit Quantile Regression Model Using Double Adaptive elastic net and Adaptive Ridge Regression
...Show More Authors

     Recently Tobit  Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique  and Bayesian hierarchical model with adaptive ridge regression technique .

 in double adaptive elastic net technique we assume  different penalization parameters  for penalization different regression coefficients in both parameters λ1and  λ, also in adaptive ridge regression technique we assume different  penalization parameters for penalization different regression coefficients i

... Show More
View Publication Preview PDF
Crossref