Preferred Language
Articles
/
jeasiq-2607
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared using standard mean squares error via simulated experiments and taking different sample sizes (20, 40, 80, and 160). The model's superiority was shown by achieving the least value of the mean squares error (MSE(, which indicated by the fuzzy bridge regression model.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Suggested Model for auditing the performance of municipal institutions to verify the services provided
...Show More Authors

The services provided by the municipal institutions of the basic things needed by the man in his daily life and the evolution of cities basically depends on these services and therefore has paid most of the world's attention to this vital facility and give him the biggest concern for the welfare of the citizens, as is the research problem that there is no program scrutiny to evaluate the performance of municipal institutions contribute to measuring the efficiency and effectiveness of the services provided and was based on research on the premise that the preparation of the existence of audit program to evaluate the performance of municipal institutions contribute to measuring the efficiency and effectiveness of services provided has reac

... Show More
View Publication
Crossref
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Comparative Study of Ranking Methods for Fuzzy Transportation
...Show More Authors

There are several methods that are used to solve the traditional transportation problems whose units of supply, demand quantities, and cost transportation are known exactly. These methods obtain basic solution, and develop it to the best solution through a series of consecutive calculations to obtain the optimal solution.
The steps are more complex with fuzzy variables, so this paper presents the disadvantages of solutions of the traditional ways with existence of variables in the fuzzy form.
This paper also presents a comparison between the results that emerged after using different conversion ranking formulas to convert from fuzzy form to crisp form on the same numerical example with a full fuzz

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Fixed Point Theorem for Some Types of Fuzzy Jungck Contractive Mappings In Hilbert Space
...Show More Authors

         In this paper, developed Jungck contractive mappings into fuzzy Jungck contractive and proved  fuzzy fixed point for some types of generalize fuzzy Jungck contractive mappings.

 

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
On Estimating Reliability of a Stress – Strength Model in Case of Rayleigh Pareto Distribution
...Show More Authors

The stress – strength model is one of the models that are used to compute reliability. In this paper, we derived mathematical formulas for the reliability of the stress – strength model that follows Rayleigh Pareto (Rayl. – Par) distribution. Here, the model has a single component, where strength Y is subjected to a stress X, represented by moment, reliability function, restricted behavior, and ordering statistics. Some estimation methods were used, which are the maximum likelihood, ordinary least squares, and two shrinkage methods, in addition to a newly suggested method for weighting the contraction. The performance of these estimates was studied empirically by using simulation experimentation that could give more varieties for d

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution for Progressively Censoring Data with S- Function about COVID-19
...Show More Authors

The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Estimating Stock Returns Using Rough Set Theory: An Exploratory study With An Evidence From Iraq Stock Exchange
...Show More Authors

‎ This research aims to estimate stock returns, according to the ‎Rough Set Theory ‎approach, ‎test ‎its effectiveness and accuracy in predicting stock returns and their potential in the ‎field of ‎financial ‎markets, and rationalize investor decisions. The research sample is totaling (10) ‎companies traded at Iraq Stock Exchange. The results showed a remarkable ‎ ‎Rough Set Theory application in data reduction, contributing to the rationalization of ‎investment ‎decisions. The most prominent conclusions are the capability of rough set theory ‎in ‎dealing with financial data and applying it for forecasting stock ‎returns.‎The ‎research provides those interested in investing stocks in financial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
"Compared some of the semi-parametric methods in analysis of single index model "
...Show More Authors

As the process of  estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying  model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 16 2016
Journal Name
Far East Journal Of Mathematical Sciences (fjms)
MINIMIZING WAITING TIMES USING MULTIPLE FUZZY QUEUEING MODEL WITH SUPPLY PRIORITIES
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Some Numerical Simulation Techniques for COVID-19 Model in Iraq
...Show More Authors

The aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 12 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication