Preferred Language
Articles
/
jeasiq-2607
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared using standard mean squares error via simulated experiments and taking different sample sizes (20, 40, 80, and 160). The model's superiority was shown by achieving the least value of the mean squares error (MSE(, which indicated by the fuzzy bridge regression model.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Geological Journal
A Predictive Model for Estimating Unconfined Compressive Strength from Petrophysical Properties in the Buzurgan Oilfield, Khasib Formation, Using Log Data
...Show More Authors

Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute

... Show More
View Publication
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL
...Show More Authors

Scopus
Publication Date
Sat Dec 28 2019
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
NEW ROBUST ESTIMATOR OF CHANGE POINT IN SEGMENTED REGRESSION MODEL FOR BED-LOAD OF RIVERS
...Show More Authors

View Publication Preview PDF
Clarivate Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Model Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

Theresearch took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide a practical evident that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial andthat includes all of them spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. Spatial analysis had

... Show More
View Publication Preview PDF
Publication Date
Sun May 02 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Value at risk simulation in a fixed return stock portfolio using the Monte Carlo simulation model The concept of a bond portfolio
...Show More Authors

This research aims to predict the value of the maximum daily loss that the fixed-return securities portfolio may suffer in Qatar National Bank - Syria, and for this purpose data were collected for risk factors that affect the value of the portfolio represented by the time structure of interest rates in the United States of America over the extended period Between 2017 and 2018, in addition to data related to the composition of the bonds portfolio of Qatar National Bank of Syria in 2017, And then employing Monte Carlo simulation models to predict the maximum loss that may be exposed to this portfolio in the future. The results of the Monte Carlo simulation showed the possibility of decreasing the value at risk in the future due to the dec

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 31 2006
Journal Name
Journal Of Engineering
Theoretical Simulation Of Stress-Strain Relations For Some Iraqiclays Using The Endochronic Model
...Show More Authors

Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Eatimation Availability Function Through Determination The Optimal Imperfect Preventive Maintenance Period By using Simulation
...Show More Authors

This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.

According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability

p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive

preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the

average durations of the preventive and corrective maintenance actions a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error
...Show More Authors

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Beran estimator using Nadaraya-Waston and Prestley-chao weights in estimating the conditional survival function of breast cancer patients
...Show More Authors

This study includes the application of non-parametric methods in estimating the conditional survival function of the Beran method using both the Nadaraya-Waston and the Priestley-chao weights and using data for Interval censored and Right censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy Considering age is continuous variable, through using (MATLAB)  use of the (MSE) To compare weights The results showed a superior weight (Nadaraya-Waston) in estimating the survival function and condition of Both for chemotherapy and radiation therapy.

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparative Study of Some Methods of Estimating Robust Variance Covariance Matrix of the Parameters Estimated by (OLS) in Cross-Sectional Data
...Show More Authors

 

Abstract

The Classical Normal Linear Regression Model Based on Several hypotheses, one of them is Heteroscedasticity as it is known that the wing of least squares method (OLS), under the existence of these two problems make the estimators, lose their desirable properties, in addition the statistical inference becomes unaccepted table. According that we put tow alternative,  the first one is  (Generalized Least Square) Which is denoted by (GLS), and the second alternative is to (Robust covariance matrix estimation) the estimated parameters method(OLS), and that the way (GLS) method neat and certified, if the capabilities (Efficient) and the statistical inference Thread on the basis of an acceptable

... Show More
View Publication Preview PDF
Crossref