A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjusted) values.
The research aims to measure the extent of the impact of Earnings quality in the continuity of the company for a sample of private commercial banks listed on the Iraq Stock Exchange. The research sample included (15) of the listed commercial banks that continue to issue their financial statements for the period from (2009-2018).The research relied on three main models of measurement and on four steps. The first step is to measure the Persistence (Earnings Quality) by Depending the sustainability model. While the second step included measuring the Predictability of accounting profits by deriving the square root of the disparity of the estimation error from the first model Persistence (Earnings Quality), and the third step included
... Show MoreTraining has occupied a leading position in a large number of developed and developing countries alike in order to develop the skills of workers in line with the changes and developments of the era, including monitoring compliance in banks, which is one of the most important jobs in banking work to trailing and monitor the bank’s compliance with laws, regulations and instructions in order to achieve its goals Therefore, the problem of this research focuses on the following question: What is the role of training in enhancing banking compliance at the present time? In order to clarify the relationship between the main and sub-research variables, two main hypotheses and three sub-hypotheses were formulated for each hypothesis, and t
... Show MoreSemiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use
... Show MoreAbstract
The research attempted to find an explanation and solution to a problem related to the fluctuation and decrease In the rate of return on assets for the research sample banks during the duration of the research, The search started from the hypothesis that, The effect of salary Domiciliation on the banking profitability of a sample of Iraqi banks participating in the salary settlement system for the period (2016-2019),The research used the descriptive historical approach, the quantitative analytical approach and the statistical approach. The research reached a set of conclusions, the most important of which is The effect of salary Domiciliation on banking profitability was achieved in three banks
... Show MoreAbstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreThe research aims to shed light on the impact of the application of the electronic services system on electronic banking activities in a sample of Iraqi banks, as investment in technology is the most important factor for the success and future growth of administrative companies in general, and banking in particular, as global economic developments in the field of Technology has led the majority of banking sectors in the world to undergo deep reforms and radical changes in the entity of their systems and mechanisms to confront competition and keep pace with economic changes, as the concept of banking services and its diversity changed with it, especially since persistence in the traditional approach no longer gi
... Show MoreIn this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da
... Show MoreIn general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show MoreIn this paper , two method which deal with finding the optimal value for adaptive smoothing constant, are compared .This constant is used in adaptive Single Exponential Smoothing (ASES).
The comparing is between a method uses time domain and another uses frequency domain when the data contain outlier value for autoregressive model of order one AR(1) , or Markov Model, when the time series are stationary and non stationary with deferent samples .