This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squares method (FGLS) and the mean group method (MG) were used, and then the efficiency of the extracted estimators was compared in the case of mixed random parameters and the method that gives us the efficient estimator was chosen. Real data was applied that included the per capita consumption of electric energy (Y) for five countries, which represents the number of cross-sections (N = 5) over nine years (T = 9), so the number of observations is (n = 45) observations, and the explanatory variables are the consumer price index (X1) and the per capita GDP (X2). To evaluate the performance of the estimators of the (FGLS) method and the (MG) method on the general model, the mean absolute percentage error (MAPE) scale was used to compare the efficiency of the estimators. The results showed that the mean group estimation (MG) method is the best method for parameter estimation than the (FGLS) method. Also, the (MG) appeared to be the best and best method for estimating sub-parameters for each cross-section (country).
FG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
The research discusses the need to find the innovative structures and methodologies for developing Human Capital (HC) in Iraqi Universities. One of the most important of these structures is Communities of Practice (CoPs) which contributes to develop HC by using learning, teaching and training through the conversion speed of knowledge and creativity into practice. This research has been used the comparative approach through employing the methodology of Data Envelopment Analysis (DEA) by using (Excel 2010 - Solver) as a field evidence to prove the role of CoPs in developing HC. In light of the given information, a researcher adopted on an archived preliminary data about (23) colleges at Mosul University as a deliberate sample for t
... Show MoreIn the current digitalized world, cloud computing becomes a feasible solution for the virtualization of cloud computing resources. Though cloud computing has many advantages to outsourcing an organization’s information, but the strong security is the main aspect of cloud computing. Identity authentication theft becomes a vital part of the protection of cloud computing data. In this process, the intruders violate the security protocols and perform attacks on the organizations or user’s data. The situation of cloud data disclosure leads to the cloud user feeling insecure while using the cloud platform. The different traditional cryptographic techniques are not able to stop such kinds of attacks. BB84 protocol is the first quantum cry
... Show More
Leuconostoc bacteria was isolated from local pickled cabbage (Brassica oleracea capitata) and identified as Leuconostoc mesenteroides by morphology,biochemical and physiological. The local isolated L. mesenteroides bacteria under the optimal conditions of dextran production showed that, the highly production of dextran was 7.7g achieved by using a modified natural media comprised of 100ml whey, 10g refined sugar, 0.5g heated yeast extract, 0.01g CaCl2, 0.001g MgSO4, 0.001g MnCl2 and 0.001g NaCl at pH 6 and 25̊C for 24 hr of fermentation and by using 1ᵡ106 cell/ml as initial inoculums volume. Some applications in food technology (Ice cream, Loaf, Ketchup and Beef preservation) have been performed with processed dextran. The result
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreThe free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with th
... Show MoreThe cancer is one of the biggest health problems that facing the world . And the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After
... Show MoreAs the process of estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .
... Show MoreBenign prostatic hyperplasia (BPH) is one of the most common disease and major cause of morbidity in elderly men which may lead to bladder outflow obstruction and lower urinary tract symptoms (LUTS). Although sex steroid hormones play fundamental roles in prostate growth, their clinical significance is not completely clear. In the present study we assessed whether serum hormones levels as markers of prostate disease. This study includes (40) patients with benign prostatic hypertrophy and (40) control group with age rang (41-79) and (42-71) years respectively. The following biochemical investigations have been studied: Testosterone, Estradiol (E2), and Prostatic Specific Antigen (PSA) levels using ELISA method which correlated with t
... Show More