Preferred Language
Articles
/
jeasiq-2423
Using Some Estimation Methods for Mixed-Random Panel Data Regression Models with Serially Correlated Errors with Application
...Show More Authors

This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squares method (FGLS) and the mean group method (MG) were used, and then the efficiency of the extracted estimators was compared in the case of mixed random parameters and the method that gives us the efficient estimator was chosen. Real data was applied that included the per capita consumption of electric energy (Y) for five countries, which represents the number of cross-sections (N = 5) over nine years (T = 9), so the number of observations is (n = 45) observations, and the explanatory variables are the consumer price index (X1) and the per capita GDP (X2). To evaluate the performance of the estimators of the (FGLS) method and the (MG) method on the general model, the mean absolute percentage error (MAPE) scale was used to compare the efficiency of the estimators. The results showed that the mean group estimation (MG) method is the best method for parameter estimation than the (FGLS) method. Also, the (MG) appeared to be the best and best method for estimating sub-parameters for each cross-section (country).

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 13 2018
Journal Name
Journal Of Engineering
Regression Analysis Models to Predict the 28 -day Compressive Strength Using Accelerated Curing Tests
...Show More Authors

Regression analysis models are adopted by using SPSS program to predict the 28-day compressive strength as dependent variable and the accelerated compressive strength as independent variable. Three accelerated curing method was adopted, warm water (35ºC) and autogenous according to ASTM C C684-99 and the British method (55ºC) according to BS1881: Part 112:1983. The experimental concrete mix design was according to ACI 211.1. Twenty eight concrete mixes with slump rang (25-50) mm and (75-100)mm for rounded and crushed coarse aggregate with cement content (585, 512, 455, 410, 372 and 341)Kg/m3.

      The experimental results showed that the acc

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 26 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The design of a proposed model for the application of the insurance policy for medical errors
...Show More Authors

The aim of this study is to design a proposed model for a document to insure the mistakes of the medical profession in estimating the compensation for medical errors. The medical profession is an honest profession aimed primarily at serving human and human beings. In this case, the doctor may be subject to error and error , And the research has adopted the descriptive approach and the research reached several conclusions, the most prominent of which is no one to bear the responsibility of medical error, although the responsibility shared and the doctor contributes to them, doctors do not deal with patients according to their educational level and cultural and there are some doctors do not inform patients The absence of a document to insu

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error
...Show More Authors

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
The Necessary and Sufficient Optimality Conditions for a System of FOCPs with Caputo–Katugampola Derivatives
...Show More Authors

The necessary optimality conditions with Lagrange multipliers  are studied and derived for a new class that includes the system of CaputoKatugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left CaputoKatugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time  and the final state  are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Big-data Management using Map Reduce on Cloud: Case study, EEG Images' Data
...Show More Authors

Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
Fuzzy Entropy in Adaptive Fuzzy Weighted Linear Regression Analysis with Application to Estimate Infant Mortality Rate
...Show More Authors

An adaptive fuzzy weighted linear regression model in which the output is based
on the position and entropy of quadruple fuzzy numbers had dealt with. The solution
of the adaptive models is established in terms of the iterative fuzzy least squares by
introducing a new suitable metric which takes into account the types of the influence
of different imprecisions. Furthermore, the applicability of the model is made by
attempting to estimate the fuzzy infant mortality rate in Iraq using a selective set of
inputs.

View Publication Preview PDF
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of The College Of Education For Women
content Analysis for Some Type of Pillows used in Iraqi houses
...Show More Authors

content Analysis for Some Type of Pillows used in Iraqi houses

View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
A Modified Approach by Using Prediction to Build a Best Threshold in ARX Model with Practical Application
...Show More Authors

The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.

In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Optimizing Blockchain Consensus: Incorporating Trust Value in the Practical Byzantine Fault Tolerance Algorithm with Boneh-Lynn-Shacham Aggregate Signature
...Show More Authors

The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref