The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of 88% and an Accuracy of almost 89%. We also came to the conclusion that the Fibroid mass is small and less white than the Fatty mass
A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un
... Show MorePoverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.
Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
Background : Breast cancer is the most common cancer of
women. When breast cancer is detected and treated early,
the chances for survival are better. Surgery is the most
important treatment for non-metastatic breast cancer.
Al-Kindy Col Med J 2008 Vol.5(1) 40 Original Article
Objectives : The aim of this study is to review different
clinical presentation and to evaluate types of surgical
procedures and complications in treatment of nonmetastatic breast cancer.
Method : During the period from Jun 1998 to May 2005,
93 patients with non-metastatic breast cancer were
diagnosed and treated surgically in 2 hospitals in Baghdad (
Hammad Shihab military hospital and Al-Kindy teaching
hospital).
Results : Wo
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreIn order to achieve overall balance in the economy to be achieved in different markets and at one time (market commodity, monetary and labor market and the balance of payments and public budget), did not provide yet a model from which to determine the overall balance in the economy and the difficulty of finding the inter-relationship between all these markets and put them applied in the form of allowing the identification of balance in all markets at once.
One of the best models that have dealt with this subject is a model
(LM-BP-IS), who teaches balance in the commodity market and money market and balance of payments and the importance of this issue This research tries to shed light on the reality
The main objective of this study is to measure the Impact of global financial crisis on some indicators of the Saudi Arabia's economy using the Mendel-Fleming model, the importance of the study applied by focusing on the theme of general equilibrium in the face of fluctuations in the global economy. Study used a descriptive approach and the methodology of econometrics to construct the model. Study used Eviews Program for data analysis. The Data was collected from the Saudi Arabian Monetary Agency, for the period (1997-2014).Stationery of the variables was checked by Augmented Dickey-Fuller (ADF) and Phillips Perron (PP) unit roots tests. And also the co-integration
... Show More