Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models were applied in the health sector to predict the numbers of people infected with the Covid-19 virus in Iraq where the data were collected via the website of the Iraqi Ministry of Health through the daily epidemiological situation of all Iraqi provinces for the period (2021\3\28 to 2021\8\15). When analyzing, studying, and comparing these models, the researcher noted that the hybrid model outperformed other models because it had the lowest value for the MSE, RMSE, MAE, and MAPE so it was used to predict future values.
In the present study, a total of 272 freshwater fishes belonging to three species namely: Cyprinus carpio, Barbus xanthopterus and Aspius vorax, were collected from Euphrates river at Al-Haklania distrct, Al-Anbar province during the period from August 2008 till the end of July 2009, by using gill nets and cast nets. Fishes were survyed for intestinal parasitic worms. The investigation revealed the infectation of these fishes with four parasitic species: the digenetic trematode Aspidogaster limacoides from the intestine of C. carpio, B. xanthopterus and A. vorax, larval nematode Contracaecum spp. from the body cavity of C. carpio and the external surface of intestine of B
... Show MoreThree-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreAngle of arrival (AOA) estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM), satellite, military applications and spread spectrum (frequency hopping and direct sequence). Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line) (TDL). Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M) array elements is used. A transversal filter (TDL) in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The propo
... Show Morepaper
Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show More