The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter of linear regression model, one Covariate at a Time Multiple Testing OCMT. Moreover, the Euclidian Distance has been used as a comparison criterion among the three methods
This paper is carried out to detect the subsurface structures that have geological
and economical importance by interpreting the available reflection seismic data of
an area estimated to be about (740) km2. The Khashim Al-Ahmer structure is partial
of series structures of (Injana – Khashim Al-Ahmer – Mannsorya) from the (NW to
the SE), it is located within for deep faulted area. The component of the one
elongated dome of asymmetrical of structure which has(SW) limb more steeper than
the (NE) limb.Twenty three seismic sections had been interpreted for two seismic
surveys and the total length of all seismic lines is about (414.7) Km. Interpretation
of seismic data was focused on two reflectors (Fatha and Jeribi)
Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreCryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms
... Show MoreColorectal cancer CRC is the third most commonly diagnosed cancer in males and the second in female, so it is a common and life-threatening disease serum of 48 males and 40 females suffering from CRC disease as group one (G1) without taking a chemotherapy dose, the same patients group tow (G2) after taking the first chemotherapy dose, while group three (G3) whose patients in (G1) and (G2) after second taking a chemotherapy dose. and group four (G4) consist of (30 males and 30 females) healthy Iraqi control. Results showed a significant increase in IL-17, IL-17RA and CEA in G1, while there was a significant decrease in vitamin D concentration in G1 than other groups, also there was positive (+ ve) significant correlation between IL-17 and CE
... Show MoreThe study deals with the issue of multi-choice linear mathematical programming. The right side of the constraints will be multi-choice. However, the issue of multi-purpose mathematical programming can not be solved directly through linear or nonlinear techniques. The idea is to transform this matter into a normal linear problem and solve it In this research, a simple technique is introduced that enables us to deal with this issue as regular linear programming. The idea is to introduce a number of binary variables And its use to create a linear combination gives one parameter was used multiple. As well as the options of linear programming model to maximize profits to the General Company for Plastic Industries product irrigation sy
... Show MoreReliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con
... Show MoreIn this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets
Contemporary life is racing against time in its temptations and variables, and it has become shaped and changed in an amazing way in its various aspects and fields. This was facilitated by intellectual and scientific communication between civilizations, and the rapid progression in successive inventions and discoveries in the fields of science and arts of knowledge. This contributed to a great economic and commercial renaissance. Then, these economic developments entered the world into a very strong competition, which forced producers to calculate all production costs, to reach the highest profits by reducing the price of the produced commodity on the one hand, and achieving quality in appearance (especially) on the other hand. Since the ma
... Show MoreThe purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.