Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the data type and type of medical study. The probabilistic values obtained from the artificial neural network are used to calculate the net reclassification index (NRI). A program was written for this purpose using the statistical programming language (R), where the mean maximum absolute error criterion (MME) of the net reclassification network index (NRI) was used to compare the methods of specifying the sample size and the presence of the number of different default parameters in light of the value of a specific error margin (ε). To verify the performance of the methods using the comparison criteria above were the most important conclusions were that the Bennett inequality method is the best in determining the optimum sample size according to the number of default parameters and the error margin value
The study aimed to examine the impact of audit committee characteristics on the practices of intellectual capital disclosure in the annual reports of Bank and Insurance companies listed on Palestine Exchange, through performing content analysis of the annual reports for the study sample which totaled thirteen companies, including six banks and seven insurance companies. To achieve the study objectives, the study employed a content analysis approach in order to analyze the content of the intellectual capital disclosure practice, in addition, the study used cross-sectional with longitudinal data for time series for a period of time between 2014-2019. The empirical results indicated that financial expertise and the number of meeting
... Show MoreWith today's rapid and full of dangers the world banking sector is one of the most vital sectors at risk, and on the supervisory bodies responsible for monitoring the work of banks to take an active role in influencing the banks and put on the right track and is compatible with internationally approved curriculum. The lie of the research problem in the weak supervisory role of the Central Bank for banks in general and private banks in particular, limited the process of performance audit carried out by the Federal Office of Financial Supervision in auditing oversight role of the Central Bank control over the banks, according to the methods of performance audit followed by the upper bodies of financial control and accounting, And it was ba
... Show MoreMutans streptococci (MS) are a group of oral bacteria considered as the main cariogenic organisms. MS consists of several species of genus Streptococcus which are sharing similar phenotypes and genotypes. The aim of this study is to determine the genetic diversity of the core species of clinical strains of Streptococcus mutans, Streptococcus sobrinus and Streptococcus downei by using repitative extragenic palindromic (REP) primer. The DNA of the clinical strains of S. mutans (n=10), S. sobrinus (n=05) and S. downei (n=04) have been employed in the present study, which have been previously isolated from caries active subjects. The DNA of the clinical and reference strains was
... Show MoreIn this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.
A new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in
... Show MoreIn this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxi
... Show MoreIn this investigation, Rayleigh–Ritz method is used to calculate the natural frequencies of rectangular isotropic and laminated symmetric and anti-symmetric cross and angle ply composite plate with general elastic supports along its edges. Each of the admissible functions here is composed of a trigonometric function and an arbitrary continuous function that is introduced to ensure the sufficient smoothness of the so-called residual displacement function at the edges. Perhaps more importantly, this study has developed a general approach for deriving a complete set of admissible functions that can be applied to various boundary conditions. Several numerical examples are studied to demonstrate the accuracy and convergence of the current s
... Show MoreThis study aims to derive a general relation between line loads that acting on two-way slab system and the equivalent uniformly distributed loads. This relation will be so useful to structural designer that are used to working with a uniformly distributed load and enable them to use the traditional methods for analysis of two-way systems (e.g. Direct Design Method). Two types of slab systems, Slab System with Beams and Flat Slab Systems, have been considered in this study to include the effect of aspect ratio and type of slab on the proposed relation. Five aspect ratios, l2/l1 of 0.5, 0.75, 1.0, 1.5 and 2.0, have been considered for both types of two-way systems.
All necessary finite element analyses have been executed with SAFE Soft
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThe goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show More