Preferred Language
Articles
/
jeasiq-2145
Comparison of Some Methods for Estimating Parameters of General Linear Model in Presence of Heteroscedastic Problem and High Leverage Points
...Show More Authors

Linear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust weighted estimation methods that accommodate both Robust and classical methods in the detection of extreme outliers (High leverage points) (HLPs) and the determination of weights. The methods include both Diagnostic Robust Generalized Potential Based on Minimum Volume Ellipsoid (DRGP (MVE)), Diagnostic Robust Generalized Potential Based on Minimum Covariance Determinant (DRGP (MCD)), and Diagnostic Robust Generalized Potential Based on Index Set Equality (DRGP (ISE)). The comparison was made according to the standard error criterion of the estimated parameters  SE ( ) and SE ( ) of general linear regression model, for sample sizes (n=60, n=100, n=160), with different degree (severity) of heterogeneity, and contamination percentage (HLPs) are (τ =10%, τ=30%). it was found through comparison that weighted least squares estimation based on the weights of the DRGP (ISE) method are considered the best in estimating the parameters of the multiple linear regression model because they have the lowest standard error values of the estimators ( ) and ( )  as compared to other methods.

Paper type: A case study

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error
...Show More Authors

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A comparison of the Semiparametric Estimators model smoothing methods different using
...Show More Authors

In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes  n=40,60,100,variances used σ2=0.5,1,1.5 the results  for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayesian methods to estimate the failure probability for electronic systems in case the life time data are not available
...Show More Authors

In this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company.  The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system.  This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system.  We calculate the range for each estimator by using the Maximum Likelihood estimator.  We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after  it checked by the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Methods of using the periodic chart in the case of the missing values of the stable AR model (2)
...Show More Authors

In this study, we investigate the behavior of the estimated spectral density function of stationary time series in the case of missing values, which are generated by the second order Autoregressive (AR (2)) model, when the error term for the AR(2) model has many of continuous distributions. The Classical and Lomb periodograms used to study the behavior of the estimated spectral density function by using  the simulation.

 

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
"Comparison of Approximate Estimation Methods for Logistics Distribution Teachers"
...Show More Authors

The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of  sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).  

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Comparison of Some of Estimation methods of Stress-Strength Model: R = P(Y < X < Z)
...Show More Authors

In this study, the stress-strength model R = P(Y < X < Z)  is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used    to estimate the parameters  namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.  

View Publication Preview PDF
Scopus (3)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Hurst exponent estimation methods
...Show More Authors

Through recent years many researchers have developed methods to estimate the self-similarity and long memory parameter that is best known as the Hurst parameter. In this paper, we set a comparison between nine different methods. Most of them use the deviations slope to find an estimate for the Hurst parameter like Rescaled range (R/S), Aggregate Variance (AV), and Absolute moments (AM), and some depend on filtration technique like Discrete Variations (DV), Variance versus level using wavelets (VVL) and Second-order discrete derivative using wavelets (SODDW) were the comparison set by a simulation study to find the most efficient method through MASE. The results of simulation experiments were shown that the performance of the meth

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Local Polynomial Kernel and Penalized Spline to Estimating Varying Coefficient Model
...Show More Authors

Analysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use Simulation To Differentiate Between Some Modern Methods To the Model GM(1,1) To Find Missing Values And Estimate Parameters With A Practical Application
...Show More Authors

Abstract

       The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he

... Show More
View Publication Preview PDF
Crossref