Preferred Language
Articles
/
jeasiq-2088
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application
...Show More Authors

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real data on the disease of jaundice of children newborns(Infant Jaundice) and it was the best method of estimation It is the Maximum Likelihood because it gave less (MSE).                                                                                                                                     

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of weighted estimated method and proposed method (BEMW) for estimation of semi-parametric model under incomplete data
...Show More Authors

Generally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation
...Show More Authors

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
comparison between the methods estimate nonparametric and semiparametric transfer function model in time series the Using simulation
...Show More Authors

 The transfer function model the basic concepts in the time series. This model is used in the case of multivariate time series. As for the design of this model, it depends on the available data in the time series and other information in the series so when the representation of the transfer function model depends on the representation of the data In this research, the transfer function has been estimated using the style nonparametric represented in two method  local linear regression and cubic smoothing spline method The method of semi-parametric represented use semiparametric single index model, With four proposals, , That the goal of this research is comparing the capabilities of the above mentioned m

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the empirical bayes method with moments method to estimate the affiliation parameter in the clinical trials using simulation
...Show More Authors

In this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .

View Publication Preview PDF
Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Bayesian Adaptive Bridge Regression for Ordinal Models with an Application
...Show More Authors

In this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation
...Show More Authors

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 23 2022
Journal Name
Baghdad Science Journal
Comparison Between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans
...Show More Authors

In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number   determines the persistence or extinction of the COVID-19. If   , one infected cell will transmit the virus to less than one cell, as a result,  the person carrying the Coronavirus will get rid of the disease .If   the infected cell  will be able to infect  all  cells that contain ACE receptors. The stochastic model proves that if  are sufficiently large then maybe  give  us ultimate disease extinction although ,  and this  facts also proved by computer simulation.

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS
...Show More Authors

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme  value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS  & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Quadratic Form Ratio Multiple Test to Estimate Linear Regression Model Parameters in Big Data with Application: Child Labor in Iraq
...Show More Authors

              The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances.  From the diversity of Big Data variables comes many challenges that  can be interesting to the  researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter

... Show More
View Publication Preview PDF
Crossref