Preferred Language
Articles
/
jeasiq-2053
Use The moment method to Estimate the Reliability Function Of The Data Of Truncated Skew Normal Distribution
...Show More Authors

The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function, The Research Aims to Use The Method Of  Moment To Estimate The Reliability Function for Truncated skew-normal Distribution, As This Distribution Represents a Parameterized Distribution That is Characterized By flexibility in dealing with data that is Distributed Normally and Shows some Skewness. From the values ​​defined in the sample space, this means that a cut (Truncated) will be made from the left side in the Skew Normal Distribution and a new Distribution is Derived from the original Skew Distribution that achieves the characteristics of the Skew normal distribution function. Also, real data representing the operating times of three machines until the failure occurred were collected from The Capacity Department of Diyala Company for Electrical Industries, where the results showed that the machines under study have a good reliability index and that the machines can be relied upon at a high rate if they continue to work under the same current working conditions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2012
Journal Name
Ibn Al-haytham Journal For Pure And Applied Science
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Applicatio
...Show More Authors

Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Restricted Least Squares Method to Estimate and Analyze the Cobb-Douglas Production Function with Application
...Show More Authors

  In this paper, the restricted least squares method is employed to estimate the parameters of the Cobb-Douglas production function and then analyze and interprete the results obtained.         A practical application is performed on the state company for leather industries in Iraq for the period (1990-2010).         The statistical program SPSS is used to perform the required calculations.

View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function
...Show More Authors

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposal of Using Principle of Maximizing Entropy of Generalized Gamma Distribution to Estimate the Survival probabilities of the
...Show More Authors

Abstract

In this research we been estimated the survival function for data suffer from the disturbances and confusion of  Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
...Show More Authors
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimators of the parameter and Reliability Function of Inverse Rayleigh Distribution" A comparison study "
...Show More Authors

     In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the  informative and non- informative  prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation
...Show More Authors

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the Bayes Estimator and the Maximum Likelihood Estimator of the Reliability Function for Negative Exponential Distribution
...Show More Authors

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Comparison between Bayesian and Maximum Likelihood Methods for parameters and the Reliability function of Perks Distribution
...Show More Authors

In this paper, we have derived Bayesian estimation for the parameters and reliability function of Perks distribution based on two different loss functions, Lindley’s approximation has been used to obtain those values. It is assumed that the parameter behaves as a random variable have a Gumbell Type P prior with non-informative is used. And after the derivation of mathematical formulas of those estimations, the simulation method was used for comparison depending on mean square error (MSE) values and integrated mean absolute percentage error (IMAPE) values respectively. Among of conclusion that have been reached, it is observed that, the LE-NR estimate introduced the best perform for estimating the parameter λ.

View Publication Preview PDF