The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function, The Research Aims to Use The Method Of Moment To Estimate The Reliability Function for Truncated skew-normal Distribution, As This Distribution Represents a Parameterized Distribution That is Characterized By flexibility in dealing with data that is Distributed Normally and Shows some Skewness. From the values defined in the sample space, this means that a cut (Truncated) will be made from the left side in the Skew Normal Distribution and a new Distribution is Derived from the original Skew Distribution that achieves the characteristics of the Skew normal distribution function. Also, real data representing the operating times of three machines until the failure occurred were collected from The Capacity Department of Diyala Company for Electrical Industries, where the results showed that the machines under study have a good reliability index and that the machines can be relied upon at a high rate if they continue to work under the same current working conditions.
In this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We derived posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the
... Show MoreThe aim of this research is to estimate the area unit function of productivity for the potato crop in Anbar province for the autumn season (2008 / 2009) Anbar province has been chosen as an applied model for the study due to its well known in cultivating potato crop , and the data were collected through a random sample about (10%) from the study society with a (150) farmers, The results indicated that the double logarithmic formula was the best representative of the relationship between crop productivity and independent variables (quantity of potato tubers , quantity of herbicides stuffs, quantity of fertilizer , hours of mechanical labour
... Show More
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
A signature is a special identifier that confirms a person's identity and distinguishes him or her from others. The main goal of this paper is to present a deep study of the spatial density distribution method and the effect of a mass-based segmentation algorithm on its performance while it is being used to recognize handwritten signatures in an offline mode. The methodology of the algorithm is based on dividing the image of the signature into tiles that reflect the shape and geometry of the signature, and then extracting five spatial features from each of these tiles. Features include the mass of each tile, the relative mean, and the relative standard deviation for the vertical and horizontal projections of that tile. In the clas
... Show MoreThe aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical c
... Show MoreTrimmed Linear moments (TL-moments) are natural generalization of L-moments that do not require the mean of the underlying distribution to exist. It is known that the sample TL-moments is unbiased estimators to corresponding population TL-moment. Since different choices for the amount of trimming give different values of the estimators it is important to choose the estimator that has minimum mean squares error than others. Therefore, we derive an optimal choice for the amount of trimming from known distributions based on the minimum errors between the estimators. Moreover, we study simulation-based approach to choose an optimal amount of trimming and maximum like hood method by computing the estimators and mean squares error for range of
... Show MoreThis paper uses classical and shrinkage estimators to estimate the system reliability (R) in the stress-strength model when the stress and strength follow the Inverse Chen distribution (ICD). The comparisons of the proposed estimators have been presented using a simulation that depends on the mean squared error (MSE) criteria.
In this paper the method of singular value decomposition is used to estimate the ridge parameter of ridge regression estimator which is an alternative to ordinary least squares estimator when the general linear regression model suffer from near multicollinearity.
This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show More