Preferred Language
Articles
/
jeasiq-1978
Comparison of the performance of some r- (k,d) class estimators with the (PCTP) estimator that used in estimating the general linear regression model in the presence of autocorrelation and multicollinearity problems at the same time "
...Show More Authors

In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best estimator.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Robust Methods For Handling the Problem of Multicollinearity
...Show More Authors

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers  , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Use aggregate slide estimate additive splines estimation for the diagnosis of non-linear composite model self-regression with practical application
...Show More Authors

Nonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines  estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property  to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the Population Mean in Stratified Random Sampling Using Combined Regression with the Presence of Outliers
...Show More Authors

In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
A comparison Of Some Semiparametric Estimators For consumption function Regression
...Show More Authors

    This article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find  that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
...Show More Authors

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Partial Linear Model Using Wavelet and Kernel Smoothers
...Show More Authors

This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.

 

 

View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data
...Show More Authors

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
"RUF procedures forgetting the best subset linear regression model"
...Show More Authors

The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The use of the Principal components and Partial least squares methods to estimate the parameters of the logistic regression model in the case of linear multiplication problem
...Show More Authors

Abstract

  The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable.                                                                                  &nb

... Show More
View Publication Preview PDF
Crossref