The researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through results reached by the researcher find the best method came after linear programming was the exponential method because it gave a solution closely to the optimization as were the result linear programming (4,357,575), either the of result exponential method was (4,365,061) followed by method Ones Method amounting the total cost (4,371,841 ) and after the result approach (A.S.M) was the total cost (4,372,585) and there were other methods reported in the research gave a high cost compared with the methods mentioned above .
A laboratory investigation of six different tests were conducted on silty clay soil spiked with lead in concentrations of 1500 mg/kg. A constant DC voltage gradient of 1 V/cm was applied for all these tests with duration of 7 days remediation process for each test. Different purging solutions and addition configurations, i.e. injection wells, were investigated experimentally to enhance the removal of lead from Iraqi soil during electro-kinetic remediation process. The experimental results showed that the overall removal efficiency of lead for tests conducted with distilled water, 0.1 M acetic acid, 0.2 M EDTA and 1 M ammonium citrate as the purging solutions were equal to 18 %, 37 %, 42 %, and 29 %, respectively. H
... Show MoreThe exploitation of all available resources and benefiting from them is one of the most important problems facing the decision makers at the present time. In order to exploit these resources, it is necessary to organize the conflicting objectives, which is the main work in the project management, which enables the development of a plan that decision makers can use to shorten the total completion time and reduce the total cost of the project. Through the use of modern scientific techniques, and therefore the researcher using the critical path method using the technology of programming goals to find more efficient ways to make appropriate decisions where the researcher worked to solve the problems in the construction of the Departm
... Show MoreTraditionally, path selection within routing is formulated as a shortest path optimization problem. The objective function for optimization could be any one variety of parameters such as number of hops, delay, cost...etc. The problem of least cost delay constraint routing is studied in this paper since delay constraint is very common requirement of many multimedia applications and cost minimization captures the need to
distribute the network. So an iterative algorithm is proposed in this paper to solve this problem. It is appeared from the results of applying this algorithm that it gave the optimal path (optimal solution) from among multiple feasible paths (feasible solutions).
This paper studies the existence of positive solutions for the following boundary value problem :-
y(b) 0 α y(a) - β y(a) 0 bta f(y) g(t) λy    ï‚¢ï€
The solution procedure follows using the Fixed point theorem and obtains that this problem has at least one positive solution .Also,it determines ( ï¬ ) Eigenvalue which would be needed to find the positive solution .
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
Background: Irrigation of the canal system permits removal of residual tissue in the canal anatomy that cannot be reached by instrumentation of the main canals so the aim of this study was to compare and evaluate the efficiency of conventional irrigation system, endoactivator sonic irrigation system,P5 Newtron Satelec passive ultrasonic irrigation and Endovac irrigation system in removing of dentin debris at three levels of root canals and to compare the percentage of dentin debris among the three levels for each irrigation system. Materials and methods: Forty extracted premolars with approximately straight single root canals were randomly distributed into 4 tested groups of 10 teeth each. All canals were prepared with Protaper Universal ha
... Show MoreThis paper aims to study the quaternary classical continuous optimal control problem consisting of the quaternary nonlinear parabolic boundary value problem, the cost function, and the equality and inequality constraints on the state and the control. Under appropriate hypotheses, it is demonstrated that the quaternary classical continuous optimal control ruling by the quaternary nonlinear parabolic boundary value problem has a quaternary classical continuous optimal control vector that satisfies the equality constraint and inequality state and control constraint. Moreover, mathematical formulation of the quaternary adjoint equations related to the quaternary state equations is discovered, and then the weak form of the quaternary adjoint
... Show More